Abstract
Accountability is an innate part of social systems. It maintains stability and ensures positive pressure on individuals' decision-making. As actors in a social system, software developers are accountable to their team and organization for their decisions. However, the drivers of accountability and how it changes behavior in software development are less understood. In this study, we look at how the social aspects of code review affect software engineers' sense of accountability for code quality. Since software engineering (SE) is increasingly involving Large Language Models (LLM) assistance, we also evaluate the impact on accountability when introducing LLM-assisted code reviews. We carried out a two-phased sequential qualitative study (interviews --> focus groups). In Phase I (16 interviews), we sought to investigate the intrinsic drivers of software engineers influencing their sense of accountability for code quality, relying on self-reported claims. In Phase II, we tested these traits in a more natural setting by simulating traditional peer-led reviews with focus groups and then LLM-assisted review sessions. We found that there are four key intrinsic drivers of accountability for code quality: personal standards, professional integrity , pride in code quality, and maintaining one's reputation,. In a traditional peer-led review, we observed a transition from individual to collective accountability when code reviews are initiated. We also found that the introduction of LLM-assisted reviews disrupts this accountability process, challenging the reciprocity of accountability taking place in peer-led evaluations, i.e., one cannot be accountable to an LLM. Our findings imply that the introduction of AI into SE must preserve social integrity and collective accountability mechanisms.
Original language | English |
---|---|
Journal | IEEE Transactions on Software Engineering |
ISSN | 0098-5589 |
DOIs | |
Publication status | E-pub ahead of print - 27. Feb 2025 |
Keywords
- Code review
- Human factors
- Software engineering
- social factors
- LLM
- AI-Augmented Software Engineering