A comparison of the transition metal concentrations in the feces, urine, and manure slurry from different livestock animals related to environmentally relevant biogenic gaseous emissions

Simon Svane*, Henrik Karring

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

22 Downloads (Pure)

Abstract

The microbiological communities in livestock manure slurries produce gases of environmental concern such as ammonia, methane and nitrous oxide and require trace metals such as nickel, iron, and copper to synthesize active metalloenzymes that catalyse key biochemical reactions. Additionally, large quantities of trace metals are supplied to the soil when animal manure/manure slurry is used as a fertilizer, which has led to more strict legislation regarding metal contents in manure slurry. In this study, the concentrations of the environmentally relevant transition metals nickel (Ni), copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) in faeces and urine from pigs, cattle and horses were determined using graphite furnace and flame atomic absorption spectroscopy. We show that for all three animal species 97–100% of the metal contents in manure slurry originate from faeces. The analyses show that uncontaminated manure slurry from pigs has higher metal contents than the manure slurries from cattle and horses. Specifically, on a dry matter (dm) basis, pig manure slurry contains approximately 8 mg Ni/kg dm, 104 mg Cu/kg dm, 185 mg Zn/kg dm, 1134 mg Fe/kg dm, and 356 mg Mn/kg dm. Comparing the determined transition metal contents with published values for manure/manure slurry reveals that especially Cu, Zn and Fe concentrations in manure slurry have decreased in recent years. Comparing our results with other observations suggest that the levels of Ni, Cu, Zn, Fe, and Mn in manure slurries do not limit the microbial processes involved in the production or assimilation of environmentally relevant biogenic gasses.
Original languageEnglish
Article number1644702
JournalCogent Chemistry
Volume5
Number of pages18
DOIs
Publication statusPublished - 22. Jul 2019

Fingerprint

transition elements
animal manures
urine
livestock
feces
animals
nickel
zinc
manganese
metals
trace elements
copper
iron
horses
swine
furnaces
cattle
atomic absorption spectrometry
pig manure
chemical reactions

Cite this

@article{68ea32cd01f84bcf8b92d82a39813c1c,
title = "A comparison of the transition metal concentrations in the feces, urine, and manure slurry from different livestock animals related to environmentally relevant biogenic gaseous emissions",
abstract = "The microbiological communities in livestock manure slurries produce gases of environmental concern such as ammonia, methane and nitrous oxide and require trace metals such as nickel, iron, and copper to synthesize active metalloenzymes that catalyse key biochemical reactions. Additionally, large quantities of trace metals are supplied to the soil when animal manure/manure slurry is used as a fertilizer, which has led to more strict legislation regarding metal contents in manure slurry. In this study, the concentrations of the environmentally relevant transition metals nickel (Ni), copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) in faeces and urine from pigs, cattle and horses were determined using graphite furnace and flame atomic absorption spectroscopy. We show that for all three animal species 97–100{\%} of the metal contents in manure slurry originate from faeces. The analyses show that uncontaminated manure slurry from pigs has higher metal contents than the manure slurries from cattle and horses. Specifically, on a dry matter (dm) basis, pig manure slurry contains approximately 8 mg Ni/kg dm, 104 mg Cu/kg dm, 185 mg Zn/kg dm, 1134 mg Fe/kg dm, and 356 mg Mn/kg dm. Comparing the determined transition metal contents with published values for manure/manure slurry reveals that especially Cu, Zn and Fe concentrations in manure slurry have decreased in recent years. Comparing our results with other observations suggest that the levels of Ni, Cu, Zn, Fe, and Mn in manure slurries do not limit the microbial processes involved in the production or assimilation of environmentally relevant biogenic gasses.",
author = "Simon Svane and Henrik Karring",
year = "2019",
month = "7",
day = "22",
doi = "10.1080/23312009.2019.1644702",
language = "English",
volume = "5",
journal = "Cogent Chemistry",
issn = "2331-2009",
publisher = "Cogent OA",

}

TY - JOUR

T1 - A comparison of the transition metal concentrations in the feces, urine, and manure slurry from different livestock animals related to environmentally relevant biogenic gaseous emissions

AU - Svane, Simon

AU - Karring, Henrik

PY - 2019/7/22

Y1 - 2019/7/22

N2 - The microbiological communities in livestock manure slurries produce gases of environmental concern such as ammonia, methane and nitrous oxide and require trace metals such as nickel, iron, and copper to synthesize active metalloenzymes that catalyse key biochemical reactions. Additionally, large quantities of trace metals are supplied to the soil when animal manure/manure slurry is used as a fertilizer, which has led to more strict legislation regarding metal contents in manure slurry. In this study, the concentrations of the environmentally relevant transition metals nickel (Ni), copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) in faeces and urine from pigs, cattle and horses were determined using graphite furnace and flame atomic absorption spectroscopy. We show that for all three animal species 97–100% of the metal contents in manure slurry originate from faeces. The analyses show that uncontaminated manure slurry from pigs has higher metal contents than the manure slurries from cattle and horses. Specifically, on a dry matter (dm) basis, pig manure slurry contains approximately 8 mg Ni/kg dm, 104 mg Cu/kg dm, 185 mg Zn/kg dm, 1134 mg Fe/kg dm, and 356 mg Mn/kg dm. Comparing the determined transition metal contents with published values for manure/manure slurry reveals that especially Cu, Zn and Fe concentrations in manure slurry have decreased in recent years. Comparing our results with other observations suggest that the levels of Ni, Cu, Zn, Fe, and Mn in manure slurries do not limit the microbial processes involved in the production or assimilation of environmentally relevant biogenic gasses.

AB - The microbiological communities in livestock manure slurries produce gases of environmental concern such as ammonia, methane and nitrous oxide and require trace metals such as nickel, iron, and copper to synthesize active metalloenzymes that catalyse key biochemical reactions. Additionally, large quantities of trace metals are supplied to the soil when animal manure/manure slurry is used as a fertilizer, which has led to more strict legislation regarding metal contents in manure slurry. In this study, the concentrations of the environmentally relevant transition metals nickel (Ni), copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) in faeces and urine from pigs, cattle and horses were determined using graphite furnace and flame atomic absorption spectroscopy. We show that for all three animal species 97–100% of the metal contents in manure slurry originate from faeces. The analyses show that uncontaminated manure slurry from pigs has higher metal contents than the manure slurries from cattle and horses. Specifically, on a dry matter (dm) basis, pig manure slurry contains approximately 8 mg Ni/kg dm, 104 mg Cu/kg dm, 185 mg Zn/kg dm, 1134 mg Fe/kg dm, and 356 mg Mn/kg dm. Comparing the determined transition metal contents with published values for manure/manure slurry reveals that especially Cu, Zn and Fe concentrations in manure slurry have decreased in recent years. Comparing our results with other observations suggest that the levels of Ni, Cu, Zn, Fe, and Mn in manure slurries do not limit the microbial processes involved in the production or assimilation of environmentally relevant biogenic gasses.

U2 - 10.1080/23312009.2019.1644702

DO - 10.1080/23312009.2019.1644702

M3 - Journal article

VL - 5

JO - Cogent Chemistry

JF - Cogent Chemistry

SN - 2331-2009

M1 - 1644702

ER -