Project Details
Description
Wastewater treatment (WWT), which has as primary goal the improvement of water quality, may actually deteriorate air quality by the direct production of nitrous oxide (N2O), a greenhouse gas 300 times stronger than CO2 and a dominant ozone destroying chemical. Both nitrification and denitrification - processes essential for removing polluting reactive nitrogen from wastewaters - are potential sources of N2O. Increasing empirical evidence indicates that
this problem is much more severe than hitherto estimated. However, the scientific understanding is limited. Also, technical solutions to decrease N2O emissions, while still ensuring sustainable WWT with high effluent quality, are absent. For the first time, this integrated project will develop the tools and methods to identify and quantify the mechanisms and factors that control N2O production and emission from both conventional and new biological N removal technologies. The project will capture this information new predictive
models, and it will identify, implement and test new mitigation measures technologies to control N2O emissions during WWT. We will combine experimental and modeling studies that span from laboratory to full-scale WWT. A group of renowned national and international collaborators from the private and public sector with a set of complementary scientific expertise will join forces to execute this project. We will support doctoral and 1 postdoctoral fellows. It will generate first-rate scientific measurement, monitoring, modeling, mechanism, and mitigation of biological production and generate
new commercially valuable and sustainable WWT biotechnology solutions to meet both water and air quality objectives, and provide one step towards building a CO2 neutral society.
this problem is much more severe than hitherto estimated. However, the scientific understanding is limited. Also, technical solutions to decrease N2O emissions, while still ensuring sustainable WWT with high effluent quality, are absent. For the first time, this integrated project will develop the tools and methods to identify and quantify the mechanisms and factors that control N2O production and emission from both conventional and new biological N removal technologies. The project will capture this information new predictive
models, and it will identify, implement and test new mitigation measures technologies to control N2O emissions during WWT. We will combine experimental and modeling studies that span from laboratory to full-scale WWT. A group of renowned national and international collaborators from the private and public sector with a set of complementary scientific expertise will join forces to execute this project. We will support doctoral and 1 postdoctoral fellows. It will generate first-rate scientific measurement, monitoring, modeling, mechanism, and mitigation of biological production and generate
new commercially valuable and sustainable WWT biotechnology solutions to meet both water and air quality objectives, and provide one step towards building a CO2 neutral society.
Layman's description
Lattergas (N2O) er en drivhusgas med et drivhusgaspotentiale 300 gange højere end CO2. Udledning af selv små mængder af N2O har den samlede udledning af klimagasser målt i CO2-kvivalent. Dertil kommer, at N2O nedbrydning af ozonlaget. N2O udledes som et biprodukt af biologisk kvælstoffjernelse spildevandsrensningsanlæg. Vi ved endnu meget lidt om, hvor meget N2O, der frigives fra renseanlhvilke mikrobielle processer, der er involveret samt
hvilke faktorer, der regulerer mikrobielle N2O-produktion. Projektet har til formål at kaste lys over bidraget af de enkelte N2O-produktion og reguleringen af disse processer. Hertil benyttes kontrollerede g, hvor forskellige 15N-18O-mærkede substrater tilsættes. Disse analyser molekylere teknikker, online sensormålinger og matematisk modellering. af N2O måles for en række fuldskalaanlæg under forskellige driftsforhold. give en detaljeret og kvantitativ forståelse, der giver os muligheden til at forudsige kontrollere N2O-frigivelse fra renseanlæg. Dette projekt vil generere nye kommercielt værdifulde og bæredygtige bioteknologiske løsninger inden for spildevandsrensning, der opfylder fastsatte for bvand- og luftkvalitet, og være et skridt i retning af at opbygge et CO2- neutralt samfund. gruppe af anerkendte danske og internationale partnere fra både den offentlige og private sektor deltager i projektet.
hvilke faktorer, der regulerer mikrobielle N2O-produktion. Projektet har til formål at kaste lys over bidraget af de enkelte N2O-produktion og reguleringen af disse processer. Hertil benyttes kontrollerede g, hvor forskellige 15N-18O-mærkede substrater tilsættes. Disse analyser molekylere teknikker, online sensormålinger og matematisk modellering. af N2O måles for en række fuldskalaanlæg under forskellige driftsforhold. give en detaljeret og kvantitativ forståelse, der giver os muligheden til at forudsige kontrollere N2O-frigivelse fra renseanlæg. Dette projekt vil generere nye kommercielt værdifulde og bæredygtige bioteknologiske løsninger inden for spildevandsrensning, der opfylder fastsatte for bvand- og luftkvalitet, og være et skridt i retning af at opbygge et CO2- neutralt samfund. gruppe af anerkendte danske og internationale partnere fra både den offentlige og private sektor deltager i projektet.
Status | Finished |
---|---|
Effective start/end date | 01/02/2013 → 31/12/2016 |