If you made any changes in Pure these will be visible here soon.
Filter
Article in proceedings

Search results

  • 2022

    Evidential Turing Processes

    Kandemir, M., Akgül, A., Haussmann, M. & Unal, G., 2022, The Tenth International Conference on Learning Representations: ICLR 2022.

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

    File
    2 Downloads (Pure)
  • Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs

    Yildiz, C., Kandemir, M. & Rakitsch, B., 2022, (Accepted/In press) Advances in Neural Information Processing Systems: NeurIPS. (Advances in Neural Information Processing Systems).

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  • Traversing Time with Multi-Resolution Gaussian Process State-Space Models

    Longi, K., Lindinger, J., Duennbier, O., Kandemir, M., Klami, A. & Rakitsch, B., 2022, 4th Annual Learning for Dynamics & Control Conference: L4DC.

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

    File
    4 Downloads (Pure)
  • 2021

    Inferring the Structure of Ordinary Differential Equations

    Weilbach, J., Gerwinn, S., Weilbach, C. & Kandemir, M., 2021, ICML Time Series Workshop.

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

    File
    4 Downloads (Pure)
  • Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes

    Haussmann, M., Gerwinn, S., Look, A., Rakitsch, B. & Kandemir, M., 2021, International Conference on Artificial Intelligence and Statistics: AISTATS. Vol. 130. (Proceedings of Machine Learning Research, Vol. 130).

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

    Open Access
    File
    5 Downloads (Pure)
  • 2020

    Bayesian Evidential Deep Learning with PAC Regularization

    Haussmann, M., Gerwinn, S. & Kandemir, M., 2020, Advances in Approximate Bayesian Inference: AABI.

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

    File
    4 Downloads (Pure)
  • 2019

    Deep Active Learning with Adaptive Acquisition

    Haussmann, M., Hamprecht, F. A. & Kandemir, M., 27. Jun 2019, International Joint Conference on Artificial Intelligence: IJCAI.

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

    File
    7 Downloads (Pure)
  • Differential Bayesian Neural Nets

    Look, A. & Kandemir, M., 2019, NeurIPS Workshop on Bayesian Deep Learning.

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

    File
    6 Downloads (Pure)
  • Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation

    Haussmann, M., Hamprecht, F. A. & Kandemir, M., 2019, Uncertainty in Artificial Intelligence: UAI.

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

    File
    5 Downloads (Pure)
  • 2018

    Evidential Deep Learning to Quantify Classification Uncertainty

    Sensoy, M., Kaplan, L. & Kandemir, M., 5. Jun 2018, Advances in Neural Information Processing Systems: NeurIPS. Vol. 2018-December. p. 3179-3189

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

    1 Downloads (Pure)
  • 2017

    Prediction of active UE number with Bayesian neural networks for self-organizing LTE networks.

    Narmanlioglu, O., Zeydan, E., Kandemir, M. & Kranda, Y. T., 2017, Proceedings of the 2017 8th International Conference on the Network of the Future, NOF 2017: NOF. Mahmoodi, T., Secci, S., Cianfrani, A. & Idzikowaski, F. (eds.). p. 73-78

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  • Variational Bayesian Multiple Instance Learning with Gaussian Processes.

    Haußmann, M., Hamprecht, F. A. & Kandemir, M., 2017, Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017: CVPR. p. 810-819

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  • 2016

    Gaussian Process Density Counting from Weak Supervision.

    Borstel, M. V., Kandemir, M., Schmidt, P., Rao, M. K., Rajamani, K. T. & Hamprecht, F. A., 2016, European Conference on Computer Vision: ECCV. Leibe, B., Matas, J., Sebe, N. & Welling, M. (eds.). p. 365-380

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  • Variational Weakly Supervised Gaussian Processes.

    Kandemir, M., Haußmann, M., Diego, F., Rajamani, K. T., Laak, J. V. D. & Hamprecht, F. A., 2016, British Machine Vision Conference: BMVC.

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  • 2015

    Asymmetric Transfer Learning with Deep Gaussian Processes

    Kandemir, M., 2015, International Conference on Machine Learning: ICML. Bach, F. & Blei, D. (eds.). Vol. 37. p. 730-738

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  • Cell Event Detection in Phase-Contrast Microscopy Sequences from Few Annotations.

    Kandemir, M., Wojek, C. & Hamprecht, F. A., 2015, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 - 18th International Conference, Proceedings: MICCAI. Frangi, A. F., Navab, N., Hornegger, J. & Wells, W. M. (eds.). p. 316-323

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  • Detection of Retinopathy of Prematurity using multiple instance learning.

    Rani, P., Rajkumar, E. R., Rajamani, K. T., Kandemir, M. & Singh, D., 24. Sept 2015, 2015 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2015: ICACCI. Mauri, J. L., Thampi, S. M., Wozniak, M., Marques, O., Krishnaswamy, D., Sahni, S., Callegari, C., Takagi, H., Bojkovic, Z. S., Vinod, M., Prasad, N. R., Alcaraz Calero, J. M., Rodrigues, J., Rodrigues, J., Que, X., Meghanathan, N., Sandhu, R. & Au, E. (eds.). p. 2233-2237

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  • The Deep Feed-Forward Gaussian Process: An Effective Generalization to Covariance Priors.

    Kandemir, M. & Hamprecht, F. A., 2015, Proceedings in Machine Learning Research: PMLR. p. 145-159

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  • 2014

    Digital pathology: Multiple instance learning can detect Barrett's cancer.

    Kandemir, M., Feuchtinger, A., Walch, A. & Hamprecht, F. A., 29. Jul 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging, ISBI 2014: ISBI. p. 1348-1351

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  • Empowering Multiple Instance Histopathology Cancer Diagnosis by Cell Graphs

    Kandemir, M., Zhang, C. & Hamprecht, F. A., 2014, Medical Image Computing and Computer-Assisted Intervention, MICCAI 2014 - 17th International Conference, Proceedings: MICCAI. Springer, Vol. PART 2. p. 228-235 (Lecture Notes in Computer Science, Vol. 8674).

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  • Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures.

    Kandemir, M., Rubio, J. C., Schmidt, U., Wojek, C., Welbl, J., Ommer, B. & Hamprecht, F. A., 2014, Medical Image Computing and Computer Assisted Interventions: MICCAI. p. 154-161

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  • Instance Label Prediction by Dirichlet Process Multiple Instance Learning.

    Kandemir, M. & Hamprecht, F. A., 2014, Uncertainty in Artificial Intelligence - Proceedings of the 30th Conference, UAI 2014: UAI. Zhang, N. L. & Tian, J. (eds.). p. 380-389

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  • Multiple Instance Learning with Response-Optimized Random Forests.

    Straehle, C. N., Kandemir, M., Köthe, U. & Hamprecht, F. A., 2014, International Conference on Pattern Recognition: ICPR. p. 3768-3773

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  • 2012

    Learning relevance from natural eye movements in pervasive interfaces

    Kandemir, M. & Kaski, S., 2012, International Conference on Multimodal Interfaces: ICMI. p. 85-92

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  • Unsupervised Inference of Auditory Attention from Biosensors.

    Kandemir, M., Klami, A., Vetek, A. & Kaski, S., 2012, European Conference on Machine Learning: ECML. p. 403-418

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  • 2011

    Multitask Learning Using Regularized Multiple Kernel Learning.

    Gönen, M., Kandemir, M. & Kaski, S., 2011, International Conference on Neural Information Processing: ICONIP. p. 500-509

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  • 2010

    Inferring object relevance from gaze in dynamic scenes.

    Kandemir, M., Saarinen, V-M. & Kaski, S., 2010, Eye Tracking Research and Applications: ETRA. p. 105-108

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review