If you made any changes in Pure these will be visible here soon.

Personal profile

Research areas

  • Medical image processing

Fingerprint Dive into the research topics where Tomas Majtner is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 3 Similar Profiles
Fluorescence microscopy Engineering & Materials Science
Textures Engineering & Materials Science
Electron Microscopy Medicine & Life Sciences
Classifiers Engineering & Materials Science
Skin Engineering & Materials Science
Workflow Medicine & Life Sciences
Cryoelectron Microscopy Medicine & Life Sciences
Feature extraction Engineering & Materials Science

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output 2012 2019

  • 10 Article in proceedings
  • 8 Journal article
  • 1 Review

Comparison of Deep Learning-Based Recognition Techniques for Medical and Biomedical Images

Majtner, T. & S. Nadimi, E., 22. Aug 2019, International Conference on Computer Analysis of Images and Patterns: CAIP 2019: Computer Analysis of Images and Patterns. Vento, M. & Percannella, G. (eds.). Springer, p. 492-504 (Lecture Notes in Computer Science, Vol. 11678).

Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

Neural networks
Network architecture
Deep learning
2 Downloads (Pure)

Flexible workflows for on-the-fly electron-microscopy single-particle image processing using Scipion

Maluenda, D., Majtner, T., Horvath, P., Vilas, J. L., Jiménez-Moreno, A., Mota, J., Ramírez-Aportela, E., Sánchez-García, R., Conesa, P., Del Caño, L., Rancel, Y., Fonseca, Y., Martínez, M., Sharov, G., García, C. A., Strelak, D., Melero, R., Marabini, R., Carazo, J. M. & Sorzano, C. O. S., 2019, In : Acta crystallographica Section D: Structural biology . 75, p. 882-894

Research output: Contribution to journalJournal articleResearchpeer-review

Open Access
File
Workflow
Electron Microscopy
Galactosidases
Electrons
Datasets
46 Downloads (Pure)
Open Access
File
Diabetes Complications
Erythema
Color
Peripheral Nervous System Diseases
Sample Size

On the Effectiveness of Generative Adversarial Networks as HEp-2 Image Augmentation Tool

Majtner, T., Bajic, B., Lindblad, J., Sladoje, N., Blanes-Vidal, V. & S. Nadimi, E., 2019, Image Analysis: Proceedings of the 21st Scandinavian Conference, SCIA 2019. Felsberg, M., Forssén, P-E., Sintorn, I-M. & Unger, J. (eds.). Springer, p. 439-451 (Lecture Notes in Computer Science, Vol. 11482). (Image processing, computer vision, pattern recognition and graphics).

Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

Learning algorithms
Learning systems
Deep learning

Optimised deep learning features for improved melanoma detection

Majtner, T., Yildirim-Yayilgan, S. & Hardeberg, J. Y., May 2019, In : Multimedia Tools and Applications. 78, 9, p. 11883-11903

Research output: Contribution to journalJournal articleResearchpeer-review

Discriminant analysis
Classifiers
Skin
Chemical activation
Deep learning