Wilson Score Kernel Density Estimation for Bernoulli Trials

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

44 Downloads (Pure)

Abstrakt

We propose a new function estimator, called Wilson Score Kernel Density Estimation, that allows to esti-mate a mean probability and the surrounding confidence interval for parameterized processes with binomiallydistributed outcomes. Our estimator combines the advantages of kernel smoothing, from Kernel Density Esti-mation, and robustness to low number of samples, from Wilson Score. This allows for more robust and dataefficient estimates compared to the individual use of these two estimators. While our estimator is generallyapplicable for processes with binomially distributed outcomes, we will present it in the context of iterativeoptimization. Here we first show the advantage of our estimator on a mathematically well defined problem,and then apply our estimator to an industrial automation process.
OriginalsprogEngelsk
TitelProceedings of the 17th International Conference on Informatics in Control, Automation and Robotics
RedaktørerOleg Gusikhin, Kurosh Madani, Janan Zaytoon
Vol/bind1
ForlagSCITEPRESS Digital Library
Publikationsdato10. jul. 2020
Sider305-313
ISBN (Elektronisk)978-989-758-442-8
DOI
StatusUdgivet - 10. jul. 2020
Begivenhed17th International Conference on Informatics in Control, Automation and Robotics (ICINCO) -
Varighed: 7. jul. 20209. jul. 2020

Konference

Konference17th International Conference on Informatics in Control, Automation and Robotics (ICINCO)
Periode07/07/202009/07/2020

Fingeraftryk

Dyk ned i forskningsemnerne om 'Wilson Score Kernel Density Estimation for Bernoulli Trials'. Sammen danner de et unikt fingeraftryk.

Citationsformater