Well-to-wheel life cycle assessment of Eruca Sativa-based biorefinery

Vajiheh Rahimi, Keikhosro Karimi, Marzieh Shafiei, Reza Naghavi, Benyamin Khoshnevisan, Hossein Ghanavati, Seyed Saeid Mohtasebi, Shahin Rafiee, Meisam Tabatabaei*

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

Renewable energy generation through biorefineries is increasingly considered as more sustainable in comparison with fossil-based fuels as well as single-product renewable energy systems. However, biorefineries have many system variations, and therefore, the evaluation of their environmental performance and comparison with conventional systems before large-scale deployment is essential. In this paper, the sustainability of three different biorefiney scenarios (Sc-1, Sc-2, and Sc-3) based on Eruca sativa (ES) as feedstock were investigated using a life cycle assessment approach from energy balance and environmental point of views. Biodiesel, electricity, ethanol, heat, glycerol, and/or biomethane were the marketable products taken into account under the conditions of these scenarios. According to the results obtained, we argue that although biorefineries offer unique features as most effective alternatives for mitigating climate change and reducing dependence on fossil fuels, the selection of biomass processing options and management decisions can widely affect the final evaluation results. Overall, providing transportation fuel through Sc-2 in which biodiesel, electricity, ethanol, heat, and glycerol were produced could decrease GHG emissions by approximately 140% compared with the combustion of neat diesel while also offering a total net energy gain (NEG) of 4.94E+08 MJ/yr. Nevertheless, if biorefineries are to be used for future transportation fuel production, a great deal of efforts should still be made to achieve better environmental performance in the Human Health and Ecosystem quality damage categories.

OriginalsprogEngelsk
TidsskriftRenewable Energy
Vol/bind117
Sider (fra-til)135-149
Antal sider15
ISSN0960-1481
DOI
StatusUdgivet - mar. 2018

Bibliografisk note

Publisher Copyright:
© 2017 Elsevier Ltd

Fingeraftryk

Dyk ned i forskningsemnerne om 'Well-to-wheel life cycle assessment of Eruca Sativa-based biorefinery'. Sammen danner de et unikt fingeraftryk.

Citationsformater