Use of clinical data and acceleration profiles to validate pneumatic transportation systems

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Resumé

Modern pneumatic transportation systems (PTSs) are widely used in hospitals for rapid blood sample transportation. The use of PTS may affect sample integrity. Impact on sample integrity in relation to hemolysis and platelet assays was investigated and also, we wish to outline a process-based and outcome-based validation model for this preanalytical component. The effect of PTS was evaluated by drawing duplicate blood samples from healthy volunteers, one sent by PTS and the other transported manually to the core laboratory. Markers of hemolysis (potassium, lactate dehydrogenase [LD] and hemolysis index [HI]) and platelet function and activation were assessed. Historic laboratory test results of hemolysis markers measured before and after implementation of PTS were compared. Furthermore, acceleration profiles during PTS and manual transportation were obtained from a mini g logger in a sample tube. Hand-carried samples experienced a maximum peak acceleration of 5 g, while peaks at almost 15 g were observed for PTS. No differences were detected in results of potassium, LD, platelet function and activation between PTS and manual transport. Using past laboratory data, differences in potassium and LD significantly differed before and after PTS installation for all three lines evaluated. However, these estimated differences were not clinically significant. In this study, we found no evidence of PTS-induced hemolysis or impact on platelet function or activation assays. Further, we did not find any clinically significant changes indicating an acceleration-dependent impact on blood sample quality. Quality assurance of PTS can be performed by surveilling outcome markers such as HI, potassium and LD.

OriginalsprogEngelsk
TidsskriftClinical Chemistry and Laboratory Medicine
ISSN1434-6621
DOI
StatusE-pub ahead of print - 5. dec. 2019

Fingeraftryk

Pneumatics
Hemolysis
Platelets
L-Lactate Dehydrogenase
Potassium
Blood
Chemical activation
Assays
Quality assurance

Citer dette

@article{a5768e29bf1446cb93f13a7ace4bad70,
title = "Use of clinical data and acceleration profiles to validate pneumatic transportation systems",
abstract = "Modern pneumatic transportation systems (PTSs) are widely used in hospitals for rapid blood sample transportation. The use of PTS may affect sample integrity. Impact on sample integrity in relation to hemolysis and platelet assays was investigated and also, we wish to outline a process-based and outcome-based validation model for this preanalytical component. The effect of PTS was evaluated by drawing duplicate blood samples from healthy volunteers, one sent by PTS and the other transported manually to the core laboratory. Markers of hemolysis (potassium, lactate dehydrogenase [LD] and hemolysis index [HI]) and platelet function and activation were assessed. Historic laboratory test results of hemolysis markers measured before and after implementation of PTS were compared. Furthermore, acceleration profiles during PTS and manual transportation were obtained from a mini g logger in a sample tube. Hand-carried samples experienced a maximum peak acceleration of 5 g, while peaks at almost 15 g were observed for PTS. No differences were detected in results of potassium, LD, platelet function and activation between PTS and manual transport. Using past laboratory data, differences in potassium and LD significantly differed before and after PTS installation for all three lines evaluated. However, these estimated differences were not clinically significant. In this study, we found no evidence of PTS-induced hemolysis or impact on platelet function or activation assays. Further, we did not find any clinically significant changes indicating an acceleration-dependent impact on blood sample quality. Quality assurance of PTS can be performed by surveilling outcome markers such as HI, potassium and LD.",
keywords = "acceleration, blood sample quality, pneumatic transportation system, preanalytical, quality control, validation system, vibration",
author = "Charlotte Gils and Franziska Broell and Vinholt, {Pernille J} and Christian Nielsen and Mads Nybo",
year = "2019",
month = "12",
day = "5",
doi = "10.1515/cclm-2019-0881",
language = "English",
journal = "Clinical Chemistry and Laboratory Medicine",
issn = "1434-6621",
publisher = "Walterde Gruyter GmbH",

}

TY - JOUR

T1 - Use of clinical data and acceleration profiles to validate pneumatic transportation systems

AU - Gils, Charlotte

AU - Broell, Franziska

AU - Vinholt, Pernille J

AU - Nielsen, Christian

AU - Nybo, Mads

PY - 2019/12/5

Y1 - 2019/12/5

N2 - Modern pneumatic transportation systems (PTSs) are widely used in hospitals for rapid blood sample transportation. The use of PTS may affect sample integrity. Impact on sample integrity in relation to hemolysis and platelet assays was investigated and also, we wish to outline a process-based and outcome-based validation model for this preanalytical component. The effect of PTS was evaluated by drawing duplicate blood samples from healthy volunteers, one sent by PTS and the other transported manually to the core laboratory. Markers of hemolysis (potassium, lactate dehydrogenase [LD] and hemolysis index [HI]) and platelet function and activation were assessed. Historic laboratory test results of hemolysis markers measured before and after implementation of PTS were compared. Furthermore, acceleration profiles during PTS and manual transportation were obtained from a mini g logger in a sample tube. Hand-carried samples experienced a maximum peak acceleration of 5 g, while peaks at almost 15 g were observed for PTS. No differences were detected in results of potassium, LD, platelet function and activation between PTS and manual transport. Using past laboratory data, differences in potassium and LD significantly differed before and after PTS installation for all three lines evaluated. However, these estimated differences were not clinically significant. In this study, we found no evidence of PTS-induced hemolysis or impact on platelet function or activation assays. Further, we did not find any clinically significant changes indicating an acceleration-dependent impact on blood sample quality. Quality assurance of PTS can be performed by surveilling outcome markers such as HI, potassium and LD.

AB - Modern pneumatic transportation systems (PTSs) are widely used in hospitals for rapid blood sample transportation. The use of PTS may affect sample integrity. Impact on sample integrity in relation to hemolysis and platelet assays was investigated and also, we wish to outline a process-based and outcome-based validation model for this preanalytical component. The effect of PTS was evaluated by drawing duplicate blood samples from healthy volunteers, one sent by PTS and the other transported manually to the core laboratory. Markers of hemolysis (potassium, lactate dehydrogenase [LD] and hemolysis index [HI]) and platelet function and activation were assessed. Historic laboratory test results of hemolysis markers measured before and after implementation of PTS were compared. Furthermore, acceleration profiles during PTS and manual transportation were obtained from a mini g logger in a sample tube. Hand-carried samples experienced a maximum peak acceleration of 5 g, while peaks at almost 15 g were observed for PTS. No differences were detected in results of potassium, LD, platelet function and activation between PTS and manual transport. Using past laboratory data, differences in potassium and LD significantly differed before and after PTS installation for all three lines evaluated. However, these estimated differences were not clinically significant. In this study, we found no evidence of PTS-induced hemolysis or impact on platelet function or activation assays. Further, we did not find any clinically significant changes indicating an acceleration-dependent impact on blood sample quality. Quality assurance of PTS can be performed by surveilling outcome markers such as HI, potassium and LD.

KW - acceleration

KW - blood sample quality

KW - pneumatic transportation system

KW - preanalytical

KW - quality control

KW - validation system

KW - vibration

U2 - 10.1515/cclm-2019-0881

DO - 10.1515/cclm-2019-0881

M3 - Journal article

C2 - 31804954

JO - Clinical Chemistry and Laboratory Medicine

JF - Clinical Chemistry and Laboratory Medicine

SN - 1434-6621

ER -