Upper Bound Performance Of Semi-Definite Programming For Localisation In Inhomogeneous Media

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

In this paper, we regarded an absorbing inhomogeneous medium as an assembly of thin layers having different propagation properties. We derived a stochastic model for the refractive index and formulated the localisation problem given noisy distance measurements using graph realisation problem. We relaxed the problem using semi-definite programming (SDP) approach in l p realisation domain and derived upper bounds that follow Edmundson-Madansky bound of order 6p (EM 6p) on the SDP objective function to provide an estimation of the techniques' localisation accuracy. Our results showed that the inhomogeneity of the media and the choice of l p norm have significant impact on the ratio of the expected value of the localisation error to the upper bound for the expected optimal SDP objective value. The tightest ratio was derived when l norm was used.

OriginalsprogEngelsk
TitelProceedings of the 27th IEEE Workshop on Machine Learning for Signal Processing
RedaktørerNaonori Ueda, Jen-Tzung Chien, Tomoko Matsui, Jan Larsen, Shinji Watanabe
Antal sider6
ForlagIEEE Press
Publikationsdato5. dec. 2017
Sider1-6
ISBN (Trykt)978-1-5090-6342-0
ISBN (Elektronisk)978-1-5090-6341-3
DOI
StatusUdgivet - 5. dec. 2017
Begivenhed27th International Workshop on Machine Learning for Signal Processing - Tokyo, Japan
Varighed: 25. sep. 201728. sep. 2017
Konferencens nummer: 27

Workshop

Workshop27th International Workshop on Machine Learning for Signal Processing
Nummer27
Land/OmrådeJapan
ByTokyo
Periode25/09/201728/09/2017
NavnMachine Learning for Signal Processing
Vol/bind2017
ISSN1551-2541

Fingeraftryk

Dyk ned i forskningsemnerne om 'Upper Bound Performance Of Semi-Definite Programming For Localisation In Inhomogeneous Media'. Sammen danner de et unikt fingeraftryk.

Citationsformater