Two modes of evolution: optimization and expansion

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

76 Downloads (Pure)

Resumé

We document and discuss two different modes of evolution across multiple systems, optimization and expansion. The former suffices in systems whose size and interactions do not change substantially over time, while the latter is a key property of open-ended evolution, where new players and interaction types enter the game. We first investigate systems from physics, biology, and engineering and argue that their evolutionary optimization dynamics is the cumulative effect of multiple independent events, or quakes, which are uniformly distributed on a logarithmic time scale and produce a decelerating fitness improvement when using the appropriate independent variable. The appropriate independent variable can be physical time for a disordered magnetic system, the number of generations for a bacterial system, or the number of produced units for a particular technological product. We then derive and discuss a simple microscopic theory that explains the nature of the involved optimization processes, and provide simulation results as illustration. Finally, we explore the evolution of human culture and technology, using empirical economic data as a proxy for human fitness. Assuming the overall dynamics is a combined optimization and expansion process, the two processes can be separated and quantified by superimposing the mathematical form of an optimization process on the empirical data and thereby transforming the independent variable. This variable turns out to increase faster than any exponential function of time, a property likely due to strong historical changes in the web of human interactions and to the associated increase in the amount of available knowledge. A microscopic theory for this time dependence remains, however, a challenging open problem.
OriginalsprogEngelsk
TidsskriftArtificial Life
Vol/bind25
Udgave nummer1
Sider (fra-til)9-21
Antal sider3
ISSN1064-5462
DOI
StatusUdgivet - 2019

Fingeraftryk

Systems Biology
Exponential functions
Physics
Proxy
Economics

Citer dette

@article{67a186f6f74645b0bb5878555d4cd803,
title = "Two modes of evolution: optimization and expansion",
abstract = "We document and discuss two different modes of evolution across multiple systems, optimization and expansion. The former suffices in systems whose size and interactions do not change substantially over time, while the latter is a key property of open-ended evolution, where new players and interaction types enter the game. We first investigate systems from physics, biology, and engineering and argue that their evolutionary optimization dynamics is the cumulative effect of multiple independent events, or quakes, which are uniformly distributed on a logarithmic time scale and produce a decelerating fitness improvement when using the appropriate independent variable. The appropriate independent variable can be physical time for a disordered magnetic system, the number of generations for a bacterial system, or the number of produced units for a particular technological product. We then derive and discuss a simple microscopic theory that explains the nature of the involved optimization processes, and provide simulation results as illustration. Finally, we explore the evolution of human culture and technology, using empirical economic data as a proxy for human fitness. Assuming the overall dynamics is a combined optimization and expansion process, the two processes can be separated and quantified by superimposing the mathematical form of an optimization process on the empirical data and thereby transforming the independent variable. This variable turns out to increase faster than any exponential function of time, a property likely due to strong historical changes in the web of human interactions and to the associated increase in the amount of available knowledge. A microscopic theory for this time dependence remains, however, a challenging open problem.",
keywords = "Biology, Evolution, Learning, Optimization, Physics, Technology",
author = "Steen Rasmussen and Paolo Sibani",
year = "2019",
doi = "10.1162/artl_a_00277",
language = "English",
volume = "25",
pages = "9--21",
journal = "Artificial Life",
issn = "1064-5462",
publisher = "M I T Press",
number = "1",

}

Two modes of evolution : optimization and expansion. / Rasmussen, Steen; Sibani, Paolo.

I: Artificial Life, Bind 25, Nr. 1, 2019, s. 9-21.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

TY - JOUR

T1 - Two modes of evolution

T2 - optimization and expansion

AU - Rasmussen, Steen

AU - Sibani, Paolo

PY - 2019

Y1 - 2019

N2 - We document and discuss two different modes of evolution across multiple systems, optimization and expansion. The former suffices in systems whose size and interactions do not change substantially over time, while the latter is a key property of open-ended evolution, where new players and interaction types enter the game. We first investigate systems from physics, biology, and engineering and argue that their evolutionary optimization dynamics is the cumulative effect of multiple independent events, or quakes, which are uniformly distributed on a logarithmic time scale and produce a decelerating fitness improvement when using the appropriate independent variable. The appropriate independent variable can be physical time for a disordered magnetic system, the number of generations for a bacterial system, or the number of produced units for a particular technological product. We then derive and discuss a simple microscopic theory that explains the nature of the involved optimization processes, and provide simulation results as illustration. Finally, we explore the evolution of human culture and technology, using empirical economic data as a proxy for human fitness. Assuming the overall dynamics is a combined optimization and expansion process, the two processes can be separated and quantified by superimposing the mathematical form of an optimization process on the empirical data and thereby transforming the independent variable. This variable turns out to increase faster than any exponential function of time, a property likely due to strong historical changes in the web of human interactions and to the associated increase in the amount of available knowledge. A microscopic theory for this time dependence remains, however, a challenging open problem.

AB - We document and discuss two different modes of evolution across multiple systems, optimization and expansion. The former suffices in systems whose size and interactions do not change substantially over time, while the latter is a key property of open-ended evolution, where new players and interaction types enter the game. We first investigate systems from physics, biology, and engineering and argue that their evolutionary optimization dynamics is the cumulative effect of multiple independent events, or quakes, which are uniformly distributed on a logarithmic time scale and produce a decelerating fitness improvement when using the appropriate independent variable. The appropriate independent variable can be physical time for a disordered magnetic system, the number of generations for a bacterial system, or the number of produced units for a particular technological product. We then derive and discuss a simple microscopic theory that explains the nature of the involved optimization processes, and provide simulation results as illustration. Finally, we explore the evolution of human culture and technology, using empirical economic data as a proxy for human fitness. Assuming the overall dynamics is a combined optimization and expansion process, the two processes can be separated and quantified by superimposing the mathematical form of an optimization process on the empirical data and thereby transforming the independent variable. This variable turns out to increase faster than any exponential function of time, a property likely due to strong historical changes in the web of human interactions and to the associated increase in the amount of available knowledge. A microscopic theory for this time dependence remains, however, a challenging open problem.

KW - Biology

KW - Evolution

KW - Learning

KW - Optimization

KW - Physics

KW - Technology

U2 - 10.1162/artl_a_00277

DO - 10.1162/artl_a_00277

M3 - Journal article

C2 - 30933629

VL - 25

SP - 9

EP - 21

JO - Artificial Life

JF - Artificial Life

SN - 1064-5462

IS - 1

ER -