Twisted Steinberg algebras

Becky Armstrong, Lisa Orloff Clark, Kristin Courtney, Ying-Fen Lin, Kathryn McCormick, Jacqui Ramagge

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

We introduce twisted Steinberg algebras over a commutative unital ring R. These generalise Steinberg algebras and are a purely algebraic analogue of Renault's twisted groupoid C*-algebras. In particular, for each ample Hausdorff groupoid G and each locally constant 2-cocycle σ on G taking values in the units R ×, we study the algebra A R(G,σ) consisting of locally constant compactly supported R-valued functions on G, with convolution and involution “twisted” by σ. We also introduce a “discretised” analogue of a twist Σ over a Hausdorff étale groupoid G, and we show that there is a one-to-one correspondence between locally constant 2-cocycles on G and discrete twists over G admitting a continuous global section. Given a discrete twist Σ arising from a locally constant 2-cocycle σ on an ample Hausdorff groupoid G, we construct an associated twisted Steinberg algebra A R(G;Σ), and we show that it coincides with A R(G,σ −1). Given any discrete field F d, we prove a graded uniqueness theorem for A F d (G,σ), and under the additional hypothesis that G is effective, we prove a Cuntz–Krieger uniqueness theorem and show that simplicity of A F d (G,σ) is equivalent to minimality of G.

OriginalsprogEngelsk
Artikelnummer106853
TidsskriftJournal of Pure and Applied Algebra
Vol/bind226
Udgave nummer3
ISSN0022-4049
DOI
StatusUdgivet - mar. 2022
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Twisted Steinberg algebras'. Sammen danner de et unikt fingeraftryk.

Citationsformater