Transforming the bootstrap: using transformers to compute scattering amplitudes in planar N=4 super Yang-Mills theory

Tianji Cai*, Garrett W Merz, François Charton, Niklas Nolte, Matthias Wilhelm, Kyle Cranmer, Lance J Dixon

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

10 Downloads (Pure)

Abstract

We pursue the use of deep learning methods to improve state-of-the-art computations in theoretical high-energy physics. Planar Ν = 4 Super Yang–Mills theory is a close cousin to the theory that describes Higgs boson production at the Large Hadron Collider; its scattering amplitudes are large mathematical expressions containing integer coefficients. In this paper, we apply transformers to predict these coefficients. The problem can be formulated in a language-like representation amenable to standard cross-entropy training objectives. We design two related experiments and show that the model achieves high accuracy (>98%) on both tasks. Our work shows that transformers can be applied successfully to problems in theoretical physics that require exact solutions.
OriginalsprogEngelsk
Artikelnummer035073
TidsskriftMachine Learning: Science and Technology
Vol/bind5
Udgave nummer3
Antal sider26
ISSN2632-2153
DOI
StatusUdgivet - sep. 2024
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Transforming the bootstrap: using transformers to compute scattering amplitudes in planar N=4 super Yang-Mills theory'. Sammen danner de et unikt fingeraftryk.

Citationsformater