Transcriptional regulation of Hepatic Stellate Cell activation in NASH

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

234 Downloads (Pure)

Abstrakt

Non-alcoholic steatohepatitis (NASH) signified by hepatic steatosis, inflammation, hepatocellular injury, and fibrosis is a growing cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma. Hepatic fibrosis resulting from accumulation of extracellular matrix proteins secreted by hepatic myofibroblasts plays an important role in disease progression. Activated hepatic stellate cells (HSCs) have been identified as the primary source of myofibroblasts in animal models of hepatotoxic liver injury; however, so far HSC activation and plasticity have not been thoroughly investigated in the context of NASH-related fibrogenesis. Here we have determined the time-resolved changes in the HSC transcriptome during development of Western diet- and fructose-induced NASH in mice, a NASH model recapitulating human disease. Intriguingly, HSC transcriptional dynamics are highly similar across disease models pointing to HSC activation as a point of convergence in the development of fibrotic liver disease. Bioinformatic interrogation of the promoter sequences of activated genes combined with loss-of-function experiments indicates that the transcriptional regulators ETS1 and RUNX1 act as drivers of NASH-associated HSC plasticity. Taken together, our results implicate HSC activation and transcriptional plasticity as key aspects of NASH pathophysiology.

OriginalsprogEngelsk
Artikelnummer2324
TidsskriftScientific Reports
Vol/bind9
Udgave nummer1
Antal sider55
ISSN2045-2322
DOI
StatusUdgivet - 20. feb. 2019

Fingeraftryk

Dyk ned i forskningsemnerne om 'Transcriptional regulation of Hepatic Stellate Cell activation in NASH'. Sammen danner de et unikt fingeraftryk.

Citationsformater