The universal C*-algebra of a contraction

Kristin Courtney, David Sherman

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

We call a contractive Hilbert space operator universal if there is a natural surjection from its generated C*-algebra to the C*-algebra generated by any other contraction. A universal contraction may be irreducible or a direct sum of (even nilpotent) matrices; we sharpen the latter fact in several ways, including von Neumann-type inequalities for *-polynomials. We also record properties of the unique C*-algebra generated by a universal contraction and show that it can replace C*(F 2) in various Kirchberg-like reformulations of Connes' embedding problem (some known, some new). Finally we prove some analogous results for universal row contraction and universal Pythagorean C*-algebras.

OriginalsprogEngelsk
TidsskriftJournal of Operator Theory
Vol/bind84
Udgave nummer1
Sider (fra-til)153-184
ISSN0379-4024
DOI
StatusUdgivet - 2020
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'The universal C*-algebra of a contraction'. Sammen danner de et unikt fingeraftryk.

Citationsformater