Abstract
We show that every nuclear O∞-stable ⁎-homomorphism with a separable exact domain has nuclear dimension at most 1. In particular separable, nuclear, O∞-stable C⁎-algebras have nuclear dimension 1. We also characterise when O∞-stable C⁎-algebras have finite decomposition rank in terms of quasidiagonality and primitive-ideal structure, and determine when full O2-stable ⁎-homomorphisms have nuclear dimension 0.
Originalsprog | Engelsk |
---|---|
Artikelnummer | 108250 |
Tidsskrift | Advances in Mathematics |
Vol/bind | 401 |
ISSN | 0001-8708 |
DOI | |
Status | Udgivet - 4. jun. 2022 |
Bibliografisk note
Funding Information:Research partially supported by an Alexander von Humboldt Foundation Fellowship (SW), Australian Research Council grant DP180100595 (AS), a Carlsberg Foundation Internationalisation Fellowship (JG), by the DGI-MINECO and European Regional Development Fund through grant MTM2017-83487-P (JB), EPSRC:EP/R025061/1 (SW), and the Beatriu de Pinós postdoctoral programme of the Government of Catalonia's Secretariat for Universities and Research 2017-BP-0079 (JB).
Publisher Copyright:
© 2022 Elsevier Inc.