The LhrC sRNAs control expression of T cell-stimulating antigen TcsA in Listeria monocytogenes by decreasing tcsA mRNA stability

Joseph A. Ross, Mette Thorsing, Eva Maria Sternkopf Lillebæk, Patricia Teixeira Dos Santos, Birgitte H. Kallipolitis*

*Kontaktforfatter for dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review


The bacterial pathogen Listeria monocytogenes encodes seven homologous small regulatory RNAs, named the LhrC family of sRNAs. The LhrCs are highly induced under infection-relevant conditions and are known to inhibit the expression of multiple target mRNAs encoding virulence-associated surface proteins. In all cases studied so far, the LhrCs use their CU-rich regions for base pairing to complementary AG-rich sequences of the ribosomal binding site (RBS) of specific target mRNAs. Consequently, LhrC-mRNA interaction results in inhibition of translation followed by mRNA degradation, corresponding to the canonical model for sRNA-mediated gene regulation in bacteria. Here, we demonstrate that the LhrC sRNAs employ a different regulatory mechanism when acting to down-regulate the expression of tcsA, encoding a T cell-stimulating antigen. In this case, LhrC base pairs to an AG-rich site located well upstream of the RBS in tcsA mRNA. Using an in vitro translation assay, we found that LhrC could not prevent the ribosome from translating the tcsA messenger. Rather, the LhrC sRNAs act to decrease the half-life of tcsA mRNA in vivo. Importantly, LhrC-mediated destabilization of tcsA mRNA relies on an intact LhrC binding site near the 5´-end of the tcsA mRNA and occurs independently of translation. Based on these findings, we propose an alternative mechanism for LhrC-mediated control in L. monocytogenes that relies solely on sRNA-induced degradation of a target mRNA.

TidsskriftR N A Biology
Udgave nummer3
Sider (fra-til)270-281
StatusUdgivet - 2019


Dyk ned i forskningsemnerne om 'The LhrC sRNAs control expression of T cell-stimulating antigen TcsA in <i>Listeria monocytogenes</i> by decreasing <i>tcsA</i> mRNA stability'. Sammen danner de et unikt fingeraftryk.