The injectivity radius of the compact Stiefel manifold under the Euclidean metric

Ralf Zimmermann*, Jakob Stoye

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

The injectivity radius of a manifold is an important quantity, both from a theoretical point of view and in terms of numerical applications.
It is the largest possible radius within which all geodesics are unique and length-minimizing.
In consequence, it is the largest possible radius within which calculations in Riemannian normal coordinates are well-defined.
A matrix manifold that arises frequently in a wide range of practical applications is the compact Stiefel manifold of orthogonal $p$-frames in $\R^n$. We observe that geodesics on this manifold are space curves of constant Frenet curvatures. Using this fact, we prove that the injectivity radius on the Stiefel manifold under the Euclidean metric is $\pi$.
OriginalsprogEngelsk
TidsskriftSIAM Journal on Matrix Analysis and Applications
Vol/bind46
Udgave nummer1
Sider (fra-til)298--309
ISSN0895-4798
DOI
StatusUdgivet - 2025

Fingeraftryk

Dyk ned i forskningsemnerne om 'The injectivity radius of the compact Stiefel manifold under the Euclidean metric'. Sammen danner de et unikt fingeraftryk.

Citationsformater