Abstract
Humoral immunity plays a defensive role against invading microbes. However, it has been largely overlooked with respect to Aspergillus fumigatus, an airborne fungal pathogen. Previously, we have demonstrated that surfactant protein D (SP-D), a major humoral component in human lung-alveoli, recognizes A. fumigatus conidial surface exposed melanin pigment. Through binding to melanin, SP-D opsonizes conidia, facilitates conidial phagocytosis, and induces the expression of protective pro-inflammatory cytokines in the phagocytic cells. In addition to melanin, SP-D also interacts with galactomannan (GM) and galactosaminogalactan (GAG), the cell wall polysaccharides exposed on germinating conidial surfaces. Therefore, we aimed at unravelling the biological significance of SP-D during the germination process. Here, we demonstrate that SP-D exerts direct fungistatic activity by restricting A. fumigatus hyphal growth. Conidial germination in the presence of SP-D significantly increased the exposure of cell wall polysaccharides chitin, α-1,3-glucan and GAG, and decreased β-1,3-glucan exposure on hyphae, but that of GM was unaltered. Hyphae grown in presence of SP-D showed positive immunolabelling for SP-D. Additionally, SP-D treated hyphae induced lower levels of pro-inflammatory cytokine, but increased IL-10 (anti-inflammatory cytokine) and IL-8 (a chemokine) secretion by human peripheral blood mononuclear cells (PBMCs), compared to control hyphae. Moreover, germ tube surface modifications due to SP-D treatment resulted in an increased hyphal susceptibility to voriconazole, an antifungal drug. It appears that SP-D exerts its anti-A. fumigatus functions via a range of mechanisms including hyphal growth-restriction, hyphal surface modification, masking of hyphal surface polysaccharides and thus altering hyphal immunostimulatory properties.
Originalsprog | Engelsk |
---|---|
Artikelnummer | 100072 |
Tidsskrift | The Cell Surface |
Vol/bind | 8 |
Antal sider | 12 |
ISSN | 2468-2330 |
DOI | |
Status | Udgivet - dec. 2022 |
Bibliografisk note
Funding Information:SSWW is supported by the Pasteur Roux-Cantarini Fellowship. We gratefully acknowledge the UtechS Photonic BioImaging (Imagopole), C2RT, Institut Pasteur, supported by the French National Research Agency (France BioImaging; ANR-10–INBS–04; Investments for the Future). We thank Dea Garcia-Hermoso (National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit, Institut Pasteur, Paris) for providing A. fumigatus clinical isolate CNRMA 15.354.
Publisher Copyright:
© 2022 The Authors