Sunny-as2: Enhancing SUNNY for algorithm selection (extended abstract)

Tong Liu, Roberto Amadini*, Maurizio Gabbrielli, Jacopo Mauro*

*Kontaktforfatter

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

SUNNY is a k-nearest neighbors based Algorithm Selection (AS) approach that schedules and runs a number of solvers for a given unforeseen problem. In this work we present sunny-as2, an enhancement of SUNNY for generic AS scenarios that advances the original approach with wrapper-based feature selection, neighborhood-size configuration and a greedy approach to speed-up the training phase. Empirical evidence shows that sunny-as2 is competitive w.r.t. state-of-the-art AS approaches.

OriginalsprogEngelsk
TitelProceedings of the 31st International Joint Conference on Artificial Intelligence, IJCAI 2022
RedaktørerLuc De Raedt
ForlagInternational Joint Conferences on Artificial Intelligence
Publikationsdato2022
Sider5752-5756
ISBN (Elektronisk)9781956792003
DOI
StatusUdgivet - 2022
Begivenhed31st International Joint Conference on Artificial Intelligence, IJCAI 2022 - Vienna, Østrig
Varighed: 23. jul. 202229. jul. 2022

Konference

Konference31st International Joint Conference on Artificial Intelligence, IJCAI 2022
Land/OmrådeØstrig
ByVienna
Periode23/07/202229/07/2022
SponsorArtificial Intelligence Journal, Didi Chuxing, et al., FinVolution Group, International Joint Conferences on Artificial Intelligence (IJCAI), Shanghai Artificial Intelligence Industry Association
NavnIJCAI International Joint Conference on Artificial Intelligence
ISSN1045-0823

Bibliografisk note

Publisher Copyright:
© 2022 International Joint Conferences on Artificial Intelligence. All rights reserved.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Sunny-as2: Enhancing SUNNY for algorithm selection (extended abstract)'. Sammen danner de et unikt fingeraftryk.

Citationsformater