Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres

Joachim Nielsen, Arthur J Cheng, Niels Ørtenblad, Hakan Westerblad

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review


In skeletal muscle fibres, glycogen has been shown to be stored at different subcellular locations: (i) between the myofibrils (intermyofibrillar); (ii) within the myofibrils (intramyofibrillar); and (iii) subsarcolemmal. Of these, intramyofibrillar glycogen has been implied as a critical regulator of sarcoplasmic reticulum Ca(2+) release. The aim of the present study was to test directly how the decrease in cytoplasmic free Ca(2+) ([Ca(2+)]i) during repeated tetanic contractions relates to the subcellular glycogen distribution. Single fibres of mouse flexor digitorum brevis muscles were fatigued with 70 Hz, 350 ms tetani given at 2 s (high-intensity fatigue, HIF) or 10 s (low-intensity fatigue, LIF) intervals, while force and [Ca(2+)]i were measured. Stimulation continued until force decreased to 30% of its initial value. Fibres were then prepared for analyses of subcellular glycogen distribution by transmission electron microscopy. At fatigue, tetanic [Ca(2+)]i was reduced to 70 ± 4% and 54 ± 4% of the initial in HIF (P < 0.01, n = 9) and LIF (P < 0.01, n = 5) fibres, respectively. At fatigue, the mean inter- and intramyofibrillar glycogen content was 60-75% lower than in rested control fibres (P < 0.05), whereas subsarcolemmal glycogen was similar to control. Individual fibres showed a good correlation between the fatigue-induced decrease in tetanic [Ca(2+)]i and the reduction in intermyofibrillar (P = 0.051) and intramyofibrillar (P = 0.0008) glycogen. In conclusion, the fatigue-induced decrease in tetanic [Ca(2+)]i, and hence force, is accompanied by major reductions in inter- and intramyofibrillar glycogen. The stronger correlation between decreased tetanic [Ca(2+)]i and reduced intramyofibrillar glycogen implies that sarcoplasmic reticulum Ca(2+) release critically depends on energy supply from the intramyofibrillar glycogen pool.

TidsskriftJournal of Physiology
Udgave nummer9
Sider (fra-til)2003-2012
StatusUdgivet - 1. maj 2014

Bibliografisk note

Published online before print March 3, 2014

Fingeraftryk Dyk ned i forskningsemnerne om 'Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres'. Sammen danner de et unikt fingeraftryk.