Stepwise Understanding on Hydrolysis Formation of the IrOx Nanoparticles as Highly Active Electrocatalyst for Oxygen Evolution Reaction

Swapnil Sanjay Karade, Raghunandan Sharma*, Martin Aage Barsøe Hedegaard, Shuang Ma Andersen*

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

21 Downloads (Pure)

Abstract

In this study, we have investigated the synthesis of supported iridium oxide (IrOx) nanoparticles (NPs) through hydrolysis in a surfactant-free aqueous bath as a possible route for the large-scale production of highly active electrocatalyst for oxygen evolution reaction (OER) in acidic water electrolyzers. The process involves (i) formation of Ir-hydroxides complex from an Ir precursor in basic media followed by (ii) protonation in acidic media to form colloidal hydrated IrOx NPs and (iii) conversion and deposition of IrOx NPs on the surface of carbon or TiN support by probe sonication. The IrOx NPs produced through hydrolysis route form highly stable colloidal solution. Since it is essential to precipitate the catalyst NPs from the colloidal solution for their use in water electrolyzer electrode development, here, we investigate the optimal reaction conditions, e.g., pH, temperature, time, and presence of support, for efficient synthesis of the catalyst NPs. The reaction intermediates formed at different reaction steps are explored to get insights into the chemistry of the process. Under the optimal synthesis conditions, 100% precipitation of IrOx NPs was achieved. Further, the precipitated TiN supported IrOx NPs exhibited high OER activity, superior to that of the commercial benchmark IrO2 electrocatalyst. The study provides a scalable synthesis route for highly active, low Ir-content OER electrocatalysts for acidic water electrolyzers. Graphical Abstract: (Figure presented.)

OriginalsprogEngelsk
TidsskriftElectrocatalysis
Vol/bind15
Udgave nummer4
Sider (fra-til)291-300
ISSN1868-2529
DOI
StatusUdgivet - jul. 2024

Bibliografisk note

Publisher Copyright:
© The Author(s) 2024.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Stepwise Understanding on Hydrolysis Formation of the IrOx Nanoparticles as Highly Active Electrocatalyst for Oxygen Evolution Reaction'. Sammen danner de et unikt fingeraftryk.

Citationsformater