Spectral flow and the unbounded Kasparov product

Jens Kaad, Matthias Lesch

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

We present a fairly general construction of unbounded representatives for the interior Kasparov product. As a main tool we develop a theory of C1-connections on operator *-modules; we do not require any smoothness assumptions; our σ-unitality assumptions are minimal. Furthermore, we use work of Kucerovsky and our recent Local Global Principle for regular operators in Hilbert C *-modules.As an application we show that the Spectral Flow Theorem and more generally the index theory of Dirac-Schrödinger operators can be nicely explained in terms of the interior Kasparov product.

OriginalsprogEngelsk
TidsskriftAdvances in Mathematics
Vol/bind248
Sider (fra-til)495-530
Antal sider36
ISSN0001-8708
DOI
StatusUdgivet - 25. nov. 2013
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Spectral flow and the unbounded Kasparov product'. Sammen danner de et unikt fingeraftryk.

Citationsformater