Sp(1)-symmetric hyperkähler quantisation

Jørgen Ellegaard Andersen*, Alessandro Malusà, Gabriele Rembado*

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

10 Downloads (Pure)

Abstract

We provide a new general scheme for the geometric quantisation of Sp(1)- symmetric hyperkahler manifolds, considering Hilbert spaces of holomorphic sections with respect to the complex structures in the hyperkahler 2-sphere. Under properness of an associated moment map, or other finiteness assumptions, we construct unitary (super) representations of groups acting by Riemannian isometries preserving the 2-sphere, and we study their decomposition in irreducible components. We apply this scheme to hyperkahler vector spaces, the Taub–NUT metric on R4, moduli spaces of framed SU(r)-instantons on R4, and in part to the Atiyah–Hitchin manifold of magnetic monopoles in R3.

OriginalsprogEngelsk
TidsskriftPacific Journal of Mathematics
Vol/bind329
Udgave nummer1
Sider (fra-til)1-38
ISSN0030-8730
DOI
StatusUdgivet - 2024

Bibliografisk note

Publisher Copyright:
© (2024) The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Sp(1)-symmetric hyperkähler quantisation'. Sammen danner de et unikt fingeraftryk.

Citationsformater