Abstract
Morrison, Walker, and Wedrich used the blob complex to construct a generalization of Khovanov-Rozansky homology to links in the boundary of a 4-manifold. The degree zero part of their theory, called the skein lasagna module, admits an elementary definition in terms of certain diagrams in the 4-manifold. We give a description of the skein lasagna module for 4-manifolds without 1- and 3-handles, and present some explicit calculations for disk bundles over S2.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal fur die Reine und Angewandte Mathematik |
Vol/bind | 2022 |
Udgave nummer | 788 |
Sider (fra-til) | 37-76 |
ISSN | 0075-4102 |
DOI | |
Status | Udgivet - 1. jul. 2022 |
Bibliografisk note
Publisher Copyright:© 2022 Walter de Gruyter GmbH, Berlin/Boston 2022 The authors were supported by NSF grants DMS-1708320 and DMS-2003488.