Shape Dependency of ICP Pose Uncertainties in the Context of Pose Estimation Systems

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

The iterative closest point (ICP) algorithm is used to fine tune the alignment of two point clouds in many pose estimation algorithms. The uncertainty in these pose estimation algorithms is thus mainly dependent on the pose uncertainty in ICP. This paper investigates the uncertainties in the ICP algorithm by the use of Monte Carlo simulation. A new descriptor based on object shape and a pose error descriptor are introduced. Results show that it is reasonable to approximate the pose errors by multivariate Gaussian distributions, and that there is a linear relationship between the parameters of the Gaussian distributions and the shape descriptor. As a consequence the shape descriptor potentially provides a computationally cheap way to approximate pose uncertainties.

OriginalsprogEngelsk
TitelComputer Vision Systems : 10th International Conference, ICVS 2015, Copenhagen, Denmark, July 6-9, 2015, Proceedings
RedaktørerAntonios Gasteratos, Lazaros Nalpantidis, Volker Kruger, Jan-Olof Eklundh
ForlagSpringer
Publikationsdato2015
Sider303-315
ISBN (Trykt)978-3-319-20903-6
ISBN (Elektronisk)978-3-319-20904-3
DOI
StatusUdgivet - 2015
Begivenhed10th International Conference on Computer Vision Systems - København, Danmark
Varighed: 6. jul. 20159. jul. 2015

Konference

Konference10th International Conference on Computer Vision Systems
Land/OmrådeDanmark
ByKøbenhavn
Periode06/07/201509/07/2015
NavnLecture Notes in Computer Science
Vol/bind9163
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Shape Dependency of ICP Pose Uncertainties in the Context of Pose Estimation Systems'. Sammen danner de et unikt fingeraftryk.

Citationsformater