TY - JOUR
T1 - Selenium in thyroid disorders — essential knowledge for clinicians
AU - Winther, Kristian Hillert
AU - Rayman, Margaret Philomena
AU - Bonnema, Steen Joop
AU - Hegedüs, Laszlo
PY - 2020/3
Y1 - 2020/3
N2 - In the 1990s, selenium was identified as a component of an enzyme that activates thyroid hormone; since this discovery, the relevance of selenium to thyroid health has been widely studied. Selenium, known primarily for the antioxidant properties of selenoenzymes, is obtained mainly from meat, seafood and grains. Intake levels vary across the world owing largely to differences in soil content and factors affecting its bioavailability to plants. Adverse health effects have been observed at both extremes of intake, with a narrow optimum range. Epidemiological studies have linked an increased risk of autoimmune thyroiditis, Graves disease and goitre to low selenium status. Trials of selenium supplementation in patients with chronic autoimmune thyroiditis have generally resulted in reduced thyroid autoantibody titre without apparent improvements in the clinical course of the disease. In Graves disease, selenium supplementation might lead to faster remission of hyperthyroidism and improved quality of life and eye involvement in patients with mild thyroid eye disease. Despite recommendations only extending to patients with Graves ophthalmopathy, selenium supplementation is widely used by clinicians for other thyroid phenotypes. Ongoing and future trials might help identify individuals who can benefit from selenium supplementation, based, for instance, on individual selenium status or genetic profile.
AB - In the 1990s, selenium was identified as a component of an enzyme that activates thyroid hormone; since this discovery, the relevance of selenium to thyroid health has been widely studied. Selenium, known primarily for the antioxidant properties of selenoenzymes, is obtained mainly from meat, seafood and grains. Intake levels vary across the world owing largely to differences in soil content and factors affecting its bioavailability to plants. Adverse health effects have been observed at both extremes of intake, with a narrow optimum range. Epidemiological studies have linked an increased risk of autoimmune thyroiditis, Graves disease and goitre to low selenium status. Trials of selenium supplementation in patients with chronic autoimmune thyroiditis have generally resulted in reduced thyroid autoantibody titre without apparent improvements in the clinical course of the disease. In Graves disease, selenium supplementation might lead to faster remission of hyperthyroidism and improved quality of life and eye involvement in patients with mild thyroid eye disease. Despite recommendations only extending to patients with Graves ophthalmopathy, selenium supplementation is widely used by clinicians for other thyroid phenotypes. Ongoing and future trials might help identify individuals who can benefit from selenium supplementation, based, for instance, on individual selenium status or genetic profile.
U2 - 10.1038/s41574-019-0311-6
DO - 10.1038/s41574-019-0311-6
M3 - Journal article
C2 - 32001830
AN - SCOPUS:85078802723
SN - 1759-5029
VL - 16
SP - 165
EP - 176
JO - Nature Reviews Endocrinology
JF - Nature Reviews Endocrinology
IS - 3
ER -