Abstract
The resistance of a lipid bilayer with respect to a bending deformation generally depends on the presence of membrane additives such as sterols, cosurfactants, peptides, and drugs. As a consequence, the partitioning of membrane additives into liposomes becomes selective with respect to liposome size; i.e., membrane rigidification depletes the membrane additives in the smaller (more strongly curved) liposomes. We have measured this liposome size-selective partitioning for two membrane additives - cholesterol and the porphyrin-based photosensitizer temoporfin - using asymmetrical flow field-flow fractionation (AF4) of liposomes and radioactive labeling of the membrane additive and lipid. The method yields either the molar cholesterol-to-lipid or the temoporfin-to-lipid ratio as a function of liposome size, from which we calculate the corresponding change of the membrane bending stiffness. For small unilamellar fluid-phase liposomes composed of palmitoyloleoylphosphatidylcholine (POPC) and palmitoyloleoylphosphatidylglycerol (POPG), we find that cholesterol rigidifies the host membrane in a manner consistent with previously reported measurements. In contrast, temoporfin softens this membrane. Partitioning results for gel-phase liposomes composed of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) are also curvature-sensitive but cannot be interpreted on the basis of the bending stiffness alone.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Chemistry and Physics of Lipids |
Vol/bind | 165 |
Udgave nummer | 5 |
Sider (fra-til) | 520-529 |
ISSN | 0009-3084 |
DOI | |
Status | Udgivet - 2012 |