Sectorial descent for wrapped Fukaya categories

Sheel Ganatra*, John Pardon, Vivek Shende

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

We develop a set of tools for doing computations in and of (partially) wrapped Fukaya categories. In particular, we prove (1) a descent (cosheaf) property for the wrapped Fukaya category with respect to so-called Weinstein sectorial coverings and (2) that the partially wrapped Fukaya category of a Weinstein manifold with respect to a mostly Legendrian stop is generated by the cocores of the critical handles and the linking disks to the stop. We also prove (3) a ‘stop removal equals localization’ result, and (4) that the Fukaya–Seidel category of a Lefschetz fibration with Liouville fiber is generated by the Lefschetz thimbles. These results are derived from three main ingredients, also of independent use: (5) a Künneth formula (6) an exact triangle in the Fukaya category associated to wrapping a Lagrangian through a Legendrian stop at infinity and (7) a geometric criterion for when a pushforward functor between wrapped Fukaya categories of Liouville sectors is fully faithful.

OriginalsprogEngelsk
TidsskriftJournal of the American Mathematical Society
Vol/bind37
Udgave nummer2
Sider (fra-til)499-635
Antal sider137
ISSN0894-0347
DOI
StatusUdgivet - 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Sectorial descent for wrapped Fukaya categories'. Sammen danner de et unikt fingeraftryk.

Citationsformater