SAR11 bacteria linked to ocean anoxia and nitrogen loss

Despina Tsementzi, Jieying Wu, Samuel Deutsch, Sangeetha Nath, Luis M. Rodriguez-R., Andrew S. Burns, Piyush Ranjan, Neha Sarode, Rex R. Malmstrom, Cory Padilla, Benjamin K. Stone, Laura A. Bristow, Morten Larsen, Jennifer B. Glass, Bo Thamdrup, Tanja Woyke, Konstantinos T. Konstatinidis, Frank J. Stewart

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Resumé

Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world’s largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without
oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth’s most abundant organismal group.
OriginalsprogEngelsk
TidsskriftNature
Vol/bind536
Udgave nummer7615
Sider (fra-til)179-183
ISSN0028-0836
DOI
StatusUdgivet - 2016

Fingeraftryk

Nitrogen
Oxygen
Gases
Proteins

Citer dette

Tsementzi, D., Wu, J., Deutsch, S., Nath, S., Rodriguez-R., L. M., Burns, A. S., ... Stewart, F. J. (2016). SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature, 536(7615), 179-183. https://doi.org/10.1038/nature19068
Tsementzi, Despina ; Wu, Jieying ; Deutsch, Samuel ; Nath, Sangeetha ; Rodriguez-R., Luis M. ; Burns, Andrew S. ; Ranjan, Piyush ; Sarode, Neha ; Malmstrom, Rex R. ; Padilla, Cory ; Stone, Benjamin K. ; Bristow, Laura A. ; Larsen, Morten ; Glass, Jennifer B. ; Thamdrup, Bo ; Woyke, Tanja ; Konstatinidis, Konstantinos T. ; Stewart, Frank J. / SAR11 bacteria linked to ocean anoxia and nitrogen loss. I: Nature. 2016 ; Bind 536, Nr. 7615. s. 179-183.
@article{073d435a5ae943a1a5ee43292529861d,
title = "SAR11 bacteria linked to ocean anoxia and nitrogen loss",
abstract = "Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world’s largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life withoutoxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40{\%} of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth’s most abundant organismal group.",
author = "Despina Tsementzi and Jieying Wu and Samuel Deutsch and Sangeetha Nath and Rodriguez-R., {Luis M.} and Burns, {Andrew S.} and Piyush Ranjan and Neha Sarode and Malmstrom, {Rex R.} and Cory Padilla and Stone, {Benjamin K.} and Bristow, {Laura A.} and Morten Larsen and Glass, {Jennifer B.} and Bo Thamdrup and Tanja Woyke and Konstatinidis, {Konstantinos T.} and Stewart, {Frank J.}",
year = "2016",
doi = "10.1038/nature19068",
language = "English",
volume = "536",
pages = "179--183",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "7615",

}

Tsementzi, D, Wu, J, Deutsch, S, Nath, S, Rodriguez-R., LM, Burns, AS, Ranjan, P, Sarode, N, Malmstrom, RR, Padilla, C, Stone, BK, Bristow, LA, Larsen, M, Glass, JB, Thamdrup, B, Woyke, T, Konstatinidis, KT & Stewart, FJ 2016, 'SAR11 bacteria linked to ocean anoxia and nitrogen loss', Nature, bind 536, nr. 7615, s. 179-183. https://doi.org/10.1038/nature19068

SAR11 bacteria linked to ocean anoxia and nitrogen loss. / Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; Nath, Sangeetha; Rodriguez-R., Luis M.; Burns, Andrew S.; Ranjan, Piyush ; Sarode, Neha; Malmstrom, Rex R.; Padilla, Cory; Stone, Benjamin K.; Bristow, Laura A.; Larsen, Morten; Glass, Jennifer B.; Thamdrup, Bo; Woyke, Tanja; Konstatinidis, Konstantinos T.; Stewart, Frank J.

I: Nature, Bind 536, Nr. 7615, 2016, s. 179-183.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

TY - JOUR

T1 - SAR11 bacteria linked to ocean anoxia and nitrogen loss

AU - Tsementzi, Despina

AU - Wu, Jieying

AU - Deutsch, Samuel

AU - Nath, Sangeetha

AU - Rodriguez-R., Luis M.

AU - Burns, Andrew S.

AU - Ranjan, Piyush

AU - Sarode, Neha

AU - Malmstrom, Rex R.

AU - Padilla, Cory

AU - Stone, Benjamin K.

AU - Bristow, Laura A.

AU - Larsen, Morten

AU - Glass, Jennifer B.

AU - Thamdrup, Bo

AU - Woyke, Tanja

AU - Konstatinidis, Konstantinos T.

AU - Stewart, Frank J.

PY - 2016

Y1 - 2016

N2 - Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world’s largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life withoutoxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth’s most abundant organismal group.

AB - Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world’s largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life withoutoxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth’s most abundant organismal group.

U2 - 10.1038/nature19068

DO - 10.1038/nature19068

M3 - Journal article

VL - 536

SP - 179

EP - 183

JO - Nature

JF - Nature

SN - 0028-0836

IS - 7615

ER -

Tsementzi D, Wu J, Deutsch S, Nath S, Rodriguez-R. LM, Burns AS et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature. 2016;536(7615):179-183. https://doi.org/10.1038/nature19068