Salinity as a key control on the diazotrophic community composition in the southern Baltic Sea

Christian Furbo Reeder*, Ina Stoltenberg, Jamileh Javidpour, Carolin Regina Löscher


Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

5 Downloads (Pure)


Over the next decade, the Baltic Sea is predicted to undergo severe changes including decreased salinity due to altered precipitation related to climate changes. This will likely impact the distribution and community composition of Baltic Sea dinitrogen-fixing (N2-fixing) microbes, among which heterocystous cyanobacteria are especially adapted to low salinities and may expand to waters with currently higher salinity, including the Danish Strait and Kattegat, while other high-salinity-Adapted N2 fixers might decrease in abundance. 

In order to explore the impact of salinity on the distribution and activity of different diazotrophic clades, we followed the natural salinity gradient from the eastern Gotland and Bornholm basins through the Arkona Basin to the Kiel Bight and combined N2 fixation rate measurements with a molecular analysis of the diazotrophic community using the key functional marker gene for N2 fixation nifH, as well as the key functional marker genes anfD and vnfD, encoding for the two alternative nitrogenases. 

We detected N2 fixation rates between 0.7 and 6 nmol NL-1 d1, and the diazotrophic community was dominated by the cyanobacterium related to Nodularia spumigena and the small unicellular, cosmopolitan cyanobacterium UCYN-A. Nodularia was present in gene abundances between 8.07x105 and 1.6x107 copies L1-1 in waters with salinities of 10 and below, while UCYN-A reached gene abundances of up to 4.5_107 copies L1 in waters with salinity above 10. Besides those two cyanobacterial diazotrophs, we found several clades of proteobacterial N2 fixers and alternative nitrogenase genes associated with Rhodopseudomonas palustris, a purple non-sulfur bacterium. Based on principal component analysis (PCA), salinity was identified as the primary parameter describing the diazotrophic distribution, while pH and temperature did not have a significant influence on the diazotrophic distribution. While this statistical analysis will need to be explored in direct experiments, it gives an indication for the future development of diazotrophy in a freshening Baltic Sea with UCYN-A retracting to more saline North Sea waters and heterocystous cyanobacteria expanding as salinity decreases.

TidsskriftOcean Science
Udgave nummer2
Sider (fra-til)401-417
StatusUdgivet - 25. mar. 2022

Bibliografisk note

Funding Information:
Financial support. This research has been supported by the Villum Fonden (grant nos. 16518 to Donald Canfield and 29411 to Carolin Regina Löscher) and the European Union Horizon 2020 (Go-Jelly (grant no. 774499 to Jamileh Javidpour)).

Publisher Copyright:
© 2022 Copernicus GmbH. All rights reserved.


Dyk ned i forskningsemnerne om 'Salinity as a key control on the diazotrophic community composition in the southern Baltic Sea'. Sammen danner de et unikt fingeraftryk.