Robust actuator fault diagnosis algorithm for autonomous hexacopter UAVs

Antonio Gonzalez Rot*, Agus Hasan*, Poramate Manoonpong*

*Kontaktforfatter

Publikation: Bidrag til tidsskriftKonferenceartikelForskningpeer review

127 Downloads (Pure)

Abstract

This paper presents a robust actuator fault diagnosis algorithm for hexacopter Unmanned Aerial Vehicles (UAVs). The algorithm, based on Adaptive eXogenous Kalman Filter (AXKF), consists of two-stage operations: (i) a nonlinear observer and (ii) a linearized adaptive Kalman filter. To this end, we provide a sufficient condition for the nonlinear observer and recursive formulas for the linearized adaptive Kalman filter. The algorithm is tested for actuator fault diagnosis of a hexacopter UAV. Simulation results show that the proposed cascaded algorithm is able to accurately estimate the magnitude of the actuator fault.

OriginalsprogEngelsk
BogserieIFAC-PapersOnLine
Vol/bind53
Udgave nummer2
Sider (fra-til)682-687
ISSN2405-8971
DOI
StatusUdgivet - 2020
Begivenhed21st IFAC World Congress 2020 - Berlin, Tyskland
Varighed: 12. jul. 202017. jul. 2020

Konference

Konference21st IFAC World Congress 2020
Land/OmrådeTyskland
ByBerlin
Periode12/07/202017/07/2020

Bibliografisk note

Funding Information:
This work was supported by the Free the Drones (FreeD) project, partly funded by Innovation Fund Denmark, at Center for Unmanned Aircraft Systems, M?rsk Mc-Kinney Moller Institute, University of Southern Denmark, project number 5156-00008B.

Publisher Copyright:
Copyright © 2020 The Authors.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Robust actuator fault diagnosis algorithm for autonomous hexacopter UAVs'. Sammen danner de et unikt fingeraftryk.

Citationsformater