Riemannian submersions and factorization of Dirac operators

Jens Kaad, Walter D. van Suijlekom

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

103 Downloads (Pure)

Abstract

We establish the factorization of Dirac operators on Riemannian submersions of compact spinc manifolds in unbounded KK-theory. More precisely, we show that the Dirac operator on the total space of such a submersion is unitarily equivalent to the tensor sum of a family of Dirac operators with the Dirac operator on the base space, up to an explicit bounded curvature term. Thus, the latter is an obstruction to having a factorization in unbounded KKtheory. We show that our tensor sum represents the bounded KK-product of the corresponding KK-cycles and connect to the early work of Connes and Skandalis.

OriginalsprogEngelsk
TidsskriftJournal of Noncommutative Geometry
Vol/bind12
Udgave nummer3
Sider (fra-til)1133-1159
Antal sider27
ISSN1661-6952
DOI
StatusUdgivet - 1. jan. 2018

Fingeraftryk

Dyk ned i forskningsemnerne om 'Riemannian submersions and factorization of Dirac operators'. Sammen danner de et unikt fingeraftryk.

Citationsformater