TY - JOUR
T1 - Retinal vessel dynamics analysis as a surrogate marker for raised intracranial pressure in patients with suspected idiopathic intracranial hypertension
AU - Hagen, Snorre Malm
AU - Wibroe, Elisabeth Arnberg
AU - Korsbæk, Johanne Juhl
AU - Andersen, Mikkel Schou
AU - Nielsen, Asger Bjørnær
AU - Nortvig, Mathias Just
AU - Beier, Dagmar
AU - Poulsen, Frantz Rom
AU - Jensen, Rigmor Højland
AU - Hamann, Steffen
PY - 2023/3/1
Y1 - 2023/3/1
N2 - INTRODUCTION: Retinal vessel dynamics analysis has proven to be a viable, non-invasive surrogate marker for increased intracranial pressure. We aimed to test this method in patients with suspected idiopathic intracranial hypertension. METHODS: Patients with suspected idiopathic intracranial hypertension were prospectively enrolled for hand-held fundus-videography during diagnostic lumbar puncture. After extracting optic disc images, peripapillary arteriole-to-venule-ratios were measured using machine-learning algorithms with manual identification control. A general linear model was applied to arteriole-to-venule-ratios and corresponding lumbar opening pressures to estimate cerebrospinal fluid pressure. RESULTS: Twenty-five patients were included with a significant difference in arteriole-to-venule-ratio between patients with (n = 17) and without (n = 8) idiopathic intracranial hypertension (0.78 ± 0.10 vs 0.90 ± 0.08, p = 0.006). Arteriole-to-venule-ratio correlated inversely with lumbar opening pressure (slope regression estimate -0.0043 (95% CI -0.0073 to -0.0023), p = 0.002) and the association was stronger when lumbar opening pressure exceeded 15 mm Hg (20 cm H2O) (slope regression estimate -0.0080 (95% CI -0.0123 to -0.0039), p < 0.001). Estimated cerebrospinal fluid pressure predicted increased lumbar opening pressure >20 mm Hg (27 cm H2O) with 78% sensitivity and 92% specificity (AUC 0.81, p = 0.02). A stand-alone arteriole-to-venule-ratio measurement predicting lumbar opening pressure >20 mm Hg (27 cm H2O) was inferior with a 48% sensitivity and 92% specificity (AUC 0.73, p = 0.002). CONCLUSION: Retinal vessel dynamics analysis with the described model for estimating cerebrospinal fluid pressure is a promising non-invasive method with a high sensitivity and specificity for detecting elevated intracranial pressure at follow-up assessments of patients with confirmed idiopathic intracranial hypertension if initial lumbar opening pressure and arteriole-to-venule-ratio data are available.
AB - INTRODUCTION: Retinal vessel dynamics analysis has proven to be a viable, non-invasive surrogate marker for increased intracranial pressure. We aimed to test this method in patients with suspected idiopathic intracranial hypertension. METHODS: Patients with suspected idiopathic intracranial hypertension were prospectively enrolled for hand-held fundus-videography during diagnostic lumbar puncture. After extracting optic disc images, peripapillary arteriole-to-venule-ratios were measured using machine-learning algorithms with manual identification control. A general linear model was applied to arteriole-to-venule-ratios and corresponding lumbar opening pressures to estimate cerebrospinal fluid pressure. RESULTS: Twenty-five patients were included with a significant difference in arteriole-to-venule-ratio between patients with (n = 17) and without (n = 8) idiopathic intracranial hypertension (0.78 ± 0.10 vs 0.90 ± 0.08, p = 0.006). Arteriole-to-venule-ratio correlated inversely with lumbar opening pressure (slope regression estimate -0.0043 (95% CI -0.0073 to -0.0023), p = 0.002) and the association was stronger when lumbar opening pressure exceeded 15 mm Hg (20 cm H2O) (slope regression estimate -0.0080 (95% CI -0.0123 to -0.0039), p < 0.001). Estimated cerebrospinal fluid pressure predicted increased lumbar opening pressure >20 mm Hg (27 cm H2O) with 78% sensitivity and 92% specificity (AUC 0.81, p = 0.02). A stand-alone arteriole-to-venule-ratio measurement predicting lumbar opening pressure >20 mm Hg (27 cm H2O) was inferior with a 48% sensitivity and 92% specificity (AUC 0.73, p = 0.002). CONCLUSION: Retinal vessel dynamics analysis with the described model for estimating cerebrospinal fluid pressure is a promising non-invasive method with a high sensitivity and specificity for detecting elevated intracranial pressure at follow-up assessments of patients with confirmed idiopathic intracranial hypertension if initial lumbar opening pressure and arteriole-to-venule-ratio data are available.
KW - cerebrospinal fluid pressure
KW - deep learning
KW - non-invasive diagnostics
KW - optic disc imaging
KW - papilledema
KW - Retinal arteriole-to-venule ratio
U2 - 10.1177/03331024221147494
DO - 10.1177/03331024221147494
M3 - Journal article
C2 - 36786365
AN - SCOPUS:85148114137
SN - 0333-1024
VL - 43
JO - Cephalalgia
JF - Cephalalgia
IS - 3
M1 - 3331024221147494
ER -