Reconstruction of Twisted Steinberg Algebras

Becky Armstrong, Gilles G de Castro, Lisa Orloff Clark, Kristin Courtney, Ying-Fen Lin, Kathryn McCormick, Jacqui Ramagge, Aidan Sims, Benjamin Steinberg

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

We show how to recover a discrete twist over an ample Hausdorff groupoid from a pair consisting of an algebra and what we call a quasi-Cartan subalgebra. We identify precisely which twists arise in this way (namely, those that satisfy the local bisection hypothesis), and we prove that the assignment of twisted Steinberg algebras to such twists and our construction of a twist from a quasi-Cartan pair are mutually inverse. We identify the algebraic pairs that correspond to effective groupoids and to principal groupoids. We also indicate the scope of our results by identifying large classes of twists for which the local bisection hypothesis holds automatically.</jats:p>
OriginalsprogEngelsk
TidsskriftInternational Mathematics Research Notices
Vol/bind2023
Udgave nummer3
Sider (fra-til)2474-2542
ISSN1073-7928
DOI
StatusUdgivet - feb. 2023
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Reconstruction of Twisted Steinberg Algebras'. Sammen danner de et unikt fingeraftryk.

Citationsformater