Real-time Occupancy Correction Method for 3D Stereovision Counting Cameras

Fisayo Caleb Sangogboye, Mikkel Baun Kjærgaard

Publikation: Kapitel i bog/rapport/konference-proceedingKonferenceabstrakt i proceedingsForskningpeer review

Abstract

In this poster, we present an occupancy count correction method - PreCount that corrects the count errors of camera sensing technologies in real-time. PreCount utilizes supervised machine learning approach to learn error paerns from previous corrections alongside some contextual factors that are responsible for the propagation of these errors. In our evaluation, we compare PreCount with state-of-art methods using the normalized root mean squared error metric (NRMSE) with datasets from four building cases. e obtained evaluation results using ground truth data indicates that PreCount can achieve an error reduction of 68% when compared to raw counts and state-of-art methods.

OriginalsprogEngelsk
TitelProceedings of the 16th ACM Conference on Embedded Networked Sensor Systems
ForlagAssociation for Computing Machinery
Publikationsdato4. nov. 2018
Sider402-403
ISBN (Elektronisk)978-1-4503-5952-8
DOI
StatusUdgivet - 4. nov. 2018
Begivenhed16th ACM Conference on Embedded Networked Sensor Systems - Shenzhen, Kina
Varighed: 4. nov. 20187. nov. 2018

Konference

Konference16th ACM Conference on Embedded Networked Sensor Systems
Land/OmrådeKina
ByShenzhen
Periode04/11/201807/11/2018

Emneord

  • 3D image sensing, Real-time estimation, occupancy count

Fingeraftryk

Dyk ned i forskningsemnerne om 'Real-time Occupancy Correction Method for 3D Stereovision Counting Cameras'. Sammen danner de et unikt fingeraftryk.

Citationsformater