Quantum Hilbert matrices and orthogonal polynomials

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

Using the notion of quantum integers associated with a complex number q≠0, we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little q-Jacobi polynomials when |q|<1, and for the special value they are closely related to Hankel matrices of reciprocal Fibonacci numbers called Filbert matrices. We find a formula for the entries of the inverse quantum Hilbert matrix.
OriginalsprogEngelsk
TidsskriftJournal of Computational and Applied Mathematics
Vol/bind233
Udgave nummer3
Sider (fra-til)723-729
Antal sider7
ISSN0377-0427
DOI
StatusUdgivet - 2009
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Quantum Hilbert matrices and orthogonal polynomials'. Sammen danner de et unikt fingeraftryk.

Citationsformater