Abstract
Using the notion of quantum integers associated with a complex number q≠0, we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little q-Jacobi polynomials when |q|<1, and for the special value they are closely related to Hankel matrices of reciprocal Fibonacci numbers called Filbert matrices. We find a formula for the entries of the inverse quantum Hilbert matrix.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Computational and Applied Mathematics |
Vol/bind | 233 |
Udgave nummer | 3 |
Sider (fra-til) | 723-729 |
Antal sider | 7 |
ISSN | 0377-0427 |
DOI | |
Status | Udgivet - 2009 |
Udgivet eksternt | Ja |