Quantum gravity fluctuations flatten the Planck-scale Higgs potential

A. Eichhorn, Y. Hamada, J. Lumma, M. Yamada

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review


We investigate asymptotic safety of a toy model of a singlet-scalar extension of the Higgs sector including two real scalar fields under the impact of quantum-gravity fluctuations. Employing functional renormalization group techniques, we search for fixed points of the system which provide a tentative ultraviolet completion of the system. We find that in a particular regime of the gravitational parameter space the canonically marginal and relevant couplings in the scalar sector - including the mass parameters - become irrelevant at the ultraviolet fixed point. The infrared potential for the two scalars that can be reached from that fixed point is fully predicted and features no free parameters. In the remainder of the gravitational parameter space, the values of the quartic couplings in our model are predicted. In light of these results, we discuss whether the singlet-scalar could be a dark-matter candidate. Furthermore, we highlight how "classical scale invariance" in the sense of a flat potential of the scalar sector at the Planck scale could arise as a consequence of asymptotic safety.

TidsskriftPhysical Review D
Udgave nummer8
StatusUdgivet - 2018
Udgivet eksterntJa


Dyk ned i forskningsemnerne om 'Quantum gravity fluctuations flatten the Planck-scale Higgs potential'. Sammen danner de et unikt fingeraftryk.