Predicting default and non-default aspectual coding: Impact and density of information features

Michael Richter, Tariq Yousef

Publikation: Bidrag til tidsskriftKonferenceartikelForskningpeer review

Abstract

This paper presents a study on the automatic classification of default and nondefault codings for aspect-marked verbs in six Slavic and one Baltic language. As classifier a Support Vector Machine (SVM) and as verbal features Shannon Information (SI) and Average Information Content (IC) have been utilised. In all languages high accuracy of the classification has been achieved. In addition, we found indications for the validity of the Uniform Information Density principle within SI and IC.

OriginalsprogEngelsk
TidsskriftCEUR Workshop Proceedings
Vol/bind2521
ISSN1613-0073
StatusUdgivet - 2019
Begivenhed3rd Workshop on Natural Language for Artificial Intelligence, NL4AI 2019 - Rende, Italien
Varighed: 19. nov. 201922. nov. 2019

Konference

Konference3rd Workshop on Natural Language for Artificial Intelligence, NL4AI 2019
Land/OmrådeItalien
ByRende
Periode19/11/201922/11/2019

Bibliografisk note

Publisher Copyright:
Copyright © 2019 for this paper by its authors.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Predicting default and non-default aspectual coding: Impact and density of information features'. Sammen danner de et unikt fingeraftryk.

Citationsformater