PointVoteNet: Accurate Object Detection and 6 DoF Pose Estimation in Point Clouds

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstrakt

We present a learning-based method for 6 DoF pose estimation of rigid objects in point cloud data. Many recent learning-based approaches use primarily RGB information for detecting objects, in some cases with an added refinement step using depth data. Our method consumes unordered point sets with/without RGB information, from initial detection to the final transformation estimation stage. This allows us to achieve accurate pose estimates, in some cases surpassing state of the art methods trained on the same data.
OriginalsprogEngelsk
TidsskriftInternational Conference on Image Processing. Proceedings
ISSN1522-4880
StatusUdgivet - 2020

Bibliografisk note

5 pages

Fingeraftryk Dyk ned i forskningsemnerne om 'PointVoteNet: Accurate Object Detection and 6 DoF Pose Estimation in Point Clouds'. Sammen danner de et unikt fingeraftryk.

  • Citationsformater