PointVoteNet: Accurate Object Detection and 6 DoF Pose Estimation in Point Clouds

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

25 Downloads (Pure)

Abstrakt

We present a learning-based method for 6 DoF pose estimation of rigid objects in point cloud data. Many recent learning-based approaches use primarily RGB information for detecting objects, in some cases with an added refinement step using depth data. Our method consumes unordered point sets with/without RGB information, from initial detection to the final transformation estimation stage. This allows us to achieve accurate pose estimates, in some cases surpassing state of the art methods trained on the same data.
OriginalsprogEngelsk
Titel2020 IEEE International Conference on Image Processing (ICIP)
ForlagIEEE
Publikationsdatookt. 2020
Sider2641-2645
ISBN (Trykt)978-1-7281-6396-3
ISBN (Elektronisk)978-1-7281-6395-6, 978-1-7281-6394-9
DOI
StatusUdgivet - okt. 2020
Begivenhed2020 IEEE International Conference on Image Processing (ICIP) - Abu Dhabi, Forenede Arabiske Emirater
Varighed: 25. okt. 202028. okt. 2020

Konference

Konference2020 IEEE International Conference on Image Processing (ICIP)
Land/OmrådeForenede Arabiske Emirater
ByAbu Dhabi
Periode25/10/202028/10/2020
NavnInternational Conference on Image Processing. Proceedings
ISSN1522-4880

Bibliografisk note

5 pages

Fingeraftryk

Dyk ned i forskningsemnerne om 'PointVoteNet: Accurate Object Detection and 6 DoF Pose Estimation in Point Clouds'. Sammen danner de et unikt fingeraftryk.

Citationsformater