Plasmon-enhanced fluorescence near nonlocal metallic nanospheres

Christos Tserkezis, N. Stefanou, Martijn Wubs, N. Asger Mortensen

Publikation: Konferencebidrag uden forlag/tidsskriftPosterForskning

Abstract

Spontaneous emission and fluorescence of organic molecules are known to strongly depend on the local electromagnetic environment. Plasmonic nanoparticles are widely explored as templates for controlling light-matter interactions, and can be tailored to optimize the fluorescence rate (Ȗem) of a dipole emitter. Here we explore the importance of hitherto disregarded nonclassical effects in the description of emitter-plasmon
hybrids, focusing on the roles of metal nonlocal optical response and size-dependent plasmon damping [1]. Comparison between the common local response approximation (LRA) and the generalized nonlocal optical response (GNOR) theory [2] shows that a significant decrease in fluorescence enhancement is obtained for emitters close to small metallic nanospheres or thin metallic nanoshells, while the optimum emitter position is also affected. In this respect, our recent work introduces the study of emitterplasmon coupling (in the weak-coupling limit) as a sensitive test for the validity of stateof-the-art nonclassical models. For the regime of strong emitter-plasmon coupling, we anticipate an analogously wide importance of a description beyond classical
electrodynamics, particularly once electron spill-out and tunneling are also fully considered.
OriginalsprogEngelsk
Publikationsdato2016
StatusUdgivet - 2016
BegivenhedStrong Coupling with Organic Molecules - Palacio Miramar, Donostia-San Sebastián, Spanien
Varighed: 19. okt. 201621. okt. 2016

Konference

KonferenceStrong Coupling with Organic Molecules
LokationPalacio Miramar
Land/OmrådeSpanien
ByDonostia-San Sebastián
Periode19/10/201621/10/2016

Bibliografisk note

Poster presented at SCOM16: Strong Coupling with Organic Molecules<br/>http://scom16.dipc.org/

Fingeraftryk

Dyk ned i forskningsemnerne om 'Plasmon-enhanced fluorescence near nonlocal metallic nanospheres'. Sammen danner de et unikt fingeraftryk.

Citationsformater