Pimsner algebras and Gysin sequences from principal circle actions

Francesca Arici, Jens Kaad, Giovanni Landi

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

A self Morita equivalence over an algebra B, given by a B-bimodule E, is thought of as a line bundle over B. The corresponding Pimsner algebra O E is then the total space algebra of a non-commutative principal circle bundle over B. A natural Gysin-like sequence relates the KK-theories of O E and of B. Interesting examples come from O E a quantum lens space over B a quantum weighted projective line (with arbitrary weights). The KK-theory of these spaces is explicitly computed and natural generators are exhibited.

OriginalsprogEngelsk
TidsskriftJournal of Noncommutative Geometry
Vol/bind10
Udgave nummer1
Sider (fra-til)29-64
ISSN1661-6952
DOI
StatusUdgivet - 2016
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Pimsner algebras and Gysin sequences from principal circle actions'. Sammen danner de et unikt fingeraftryk.

Citationsformater