Parallelizing constraint solvers for hard RCPSP instances

Roberto Amadini, Maurizio Gabbrielli, Jacopo Mauro*

*Kontaktforfatter

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

The Resource-Constrained Project Scheduling Problem (RCPSP) is a well-known scheduling problem aimed at minimizing the makespan of a project subject to temporal and resource constraints. In this paper we show that hard RCPSPs can be efficiently tackled by a portfolio approach that combines the strengths of different constraint solvers Our approach seeks to predict and run in parallel the best solvers for a new, unseen RCPSP instance by enabling the bound communication between them. This on-average allows to outperform the oracle solver that always chooses the best available solver for any given instance.

OriginalsprogEngelsk
TitelLearning and Intelligent Optimization - 10th International Conference, LION 10, Revised Selected Papers
RedaktørerPaola Festa, Meinolf Sellmann, Joaquin Vanschoren
Antal sider7
ForlagSpringer
Publikationsdato1. jan. 2016
Sider227-233
ISBN (Trykt)9783319503486
DOI
StatusUdgivet - 1. jan. 2016
Udgivet eksterntJa
Begivenhed10th International Conference on Learning and Intelligent Optimization, LION 10 - Ischia, Italien
Varighed: 29. maj 20161. jun. 2016

Konference

Konference10th International Conference on Learning and Intelligent Optimization, LION 10
Land/OmrådeItalien
ByIschia
Periode29/05/201601/06/2016
NavnLecture Notes in Computer Science
Vol/bind10079 LNCS
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Parallelizing constraint solvers for hard RCPSP instances'. Sammen danner de et unikt fingeraftryk.

Citationsformater