Online Learning-based Islanding Detection Scheme for Grid-Connected Systems

Mohammed Ali Khan, V.S. Bharath Kurukuru, Rupam Singh

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

Data aggregation in smart grids is a key component for emergency responses during abnormalities in the grid. To efficiently utilize the aggregated data, and achieve fast identification of these abnormalities, this paper develops an online islanding detection approach. The development of the technique is realized with an online learning algorithm implemented using the large-scale support vector machine (LaSVM). The algorithm adopts a classification problem for islanding detection in grid-connected systems by considering a set of independent variables and unknown variables. The independent variables are related to the known islanding events in the grid-connected system, and the unknown variables are related to the dynamics of the grid operating in real-time. The proposed approach solves this problem by training the known and unknown variables and identifying new instances through sequential minimal optimization. The training and validation results provided indicate 99.8 % accuracy for islanding detection under standard operating conditions of the grid-connected system.
OriginalsprogEngelsk
Titel2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe)
Antal sider10
ForlagIEEE
Publikationsdato17. okt. 2022
ISBN (Elektronisk)978-9-0758-1539-9
StatusUdgivet - 17. okt. 2022
Udgivet eksterntJa
Begivenhed24th European Conference on Power Electronics and Applications, EPE 2022 ECCE Europe - Hanover, Tyskland
Varighed: 5. sep. 20229. sep. 2022

Konference

Konference24th European Conference on Power Electronics and Applications, EPE 2022 ECCE Europe
Land/OmrådeTyskland
ByHanover
Periode05/09/202209/09/2022

Fingeraftryk

Dyk ned i forskningsemnerne om 'Online Learning-based Islanding Detection Scheme for Grid-Connected Systems'. Sammen danner de et unikt fingeraftryk.

Citationsformater