Online Action Learning using Kernel Density Estimation for Quick Discovery of Good Parameters for Peg-in-Hole Insertion

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

Abstract

Learning action parameters is becoming an ever more important topic in industrial assembly with tendencies towards smaller batch sizes, more required flexibility and process uncertainties. This paper presents a statistical online learning method capable of handling these issues. The method uses elimination of unpromising parameter sets to reduce the elements of the discretised sample space (inspired by Action Elimination) based on regression uncertainty. Kernel Density Estimation and Wilson Score are explored as internal representations. Based on a dynamic simulator setup for a real world Peg-in-Hole problem, it is shown that the presented method can drastically reduce the number of samples needed. Furthermore, it is also shown that the solution obtained in simulation by our learning method succeeds when executed on the corresponding real world setup.

OriginalsprogEngelsk
TitelProceedings of the 13th International Conference on Informatics in Control, Automation and Robotics
RedaktørerOleg Gusikhin, Dimitri Peaucelle, Kurosh Madani
ForlagSCITEPRESS Digital Library
Publikationsdato2016
Sider166-177
ISBN (Elektronisk)978-989-758-198-4
DOI
StatusUdgivet - 2016
Begivenhed13th International Conference on Informatics in Control, Automation and Robotics - Lisbon, Portugal
Varighed: 29. jul. 201631. jul. 2016

Konference

Konference13th International Conference on Informatics in Control, Automation and Robotics
Land/OmrådePortugal
ByLisbon
Periode29/07/201631/07/2016

Fingeraftryk

Dyk ned i forskningsemnerne om 'Online Action Learning using Kernel Density Estimation for Quick Discovery of Good Parameters for Peg-in-Hole Insertion'. Sammen danner de et unikt fingeraftryk.

Citationsformater