On upper transversals in 3-uniform hypergraphs

Michael A. Henning, Anders Yeo

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

32 Downloads (Pure)

Abstrakt

A set S of vertices in a hypergraph H is a transversal if it has a nonempty intersection with every edge of H. The upper transversal number Υ(H) of H is the maximum cardinality of a minimal transversal in H. We show that if H is a connected 3-uniform hypergraph of order n, then Υ(H) > (Formula presented). For n sufficiently large, we construct infinitely many connected 3-uniform(hypergraphs, H, of order n satisfying Υ(H) (Formula presented). We conjecture that sup (Formula presented), where n the infimum is taken over all connected 3-uniform n→∞ hypergraphs H of order n.

OriginalsprogEngelsk
Artikelnummer#P4.27
TidsskriftElectronic Journal of Combinatorics
Vol/bind25
Udgave nummer4
Sider (fra-til)1-9
ISSN1097-1440
DOI
StatusUdgivet - 2. nov. 2018

Fingeraftryk

Dyk ned i forskningsemnerne om 'On upper transversals in 3-uniform hypergraphs'. Sammen danner de et unikt fingeraftryk.

Citationsformater