On the Global Limiting Absorption Principle for Massless Dirac Operators

Alan Carey, Fritz Gesztesy*, Jens Kaad, Galina Levitina, Roger Nichols, Denis Potapov, Fedor Sukochev

*Kontaktforfatter for dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

112 Downloads (Pure)

Resumé

We prove a global limiting absorption principle on the entire real line for free, massless Dirac operators H0= α· (- i∇) for all space dimensions n∈ N, n⩾ 2. This is a new result for all dimensions other than three, in particular, it applies to the two-dimensional case which is known to be of some relevance in applications to graphene. We also prove an essential self-adjointness result for first-order matrix-valued differential operators with Lipschitz coefficients.

OriginalsprogEngelsk
TidsskriftAnnales Henri Poincare
Vol/bind19
Udgave nummer7
Sider (fra-til)1993-2019
ISSN1424-0637
DOI
StatusUdgivet - 2018

Fingeraftryk

Limiting Absorption Principle
Dirac Operator
Essential Self-adjointness
operators
differential operators
Graphene
Real Line
Lipschitz
Differential operator
graphene
Entire
First-order
Coefficient
coefficients
Relevance

Citer dette

Carey, A., Gesztesy, F., Kaad, J., Levitina, G., Nichols, R., Potapov, D., & Sukochev, F. (2018). On the Global Limiting Absorption Principle for Massless Dirac Operators. Annales Henri Poincare, 19(7), 1993-2019. https://doi.org/10.1007/s00023-018-0675-5
Carey, Alan ; Gesztesy, Fritz ; Kaad, Jens ; Levitina, Galina ; Nichols, Roger ; Potapov, Denis ; Sukochev, Fedor. / On the Global Limiting Absorption Principle for Massless Dirac Operators. I: Annales Henri Poincare. 2018 ; Bind 19, Nr. 7. s. 1993-2019.
@article{da42840f305a4e079d43dd093a8d04ae,
title = "On the Global Limiting Absorption Principle for Massless Dirac Operators",
abstract = "We prove a global limiting absorption principle on the entire real line for free, massless Dirac operators H0= α· (- i∇) for all space dimensions n∈ N, n⩾ 2. This is a new result for all dimensions other than three, in particular, it applies to the two-dimensional case which is known to be of some relevance in applications to graphene. We also prove an essential self-adjointness result for first-order matrix-valued differential operators with Lipschitz coefficients.",
author = "Alan Carey and Fritz Gesztesy and Jens Kaad and Galina Levitina and Roger Nichols and Denis Potapov and Fedor Sukochev",
year = "2018",
doi = "10.1007/s00023-018-0675-5",
language = "English",
volume = "19",
pages = "1993--2019",
journal = "Annales Henri Poincare",
issn = "1424-0637",
publisher = "Springer",
number = "7",

}

Carey, A, Gesztesy, F, Kaad, J, Levitina, G, Nichols, R, Potapov, D & Sukochev, F 2018, 'On the Global Limiting Absorption Principle for Massless Dirac Operators', Annales Henri Poincare, bind 19, nr. 7, s. 1993-2019. https://doi.org/10.1007/s00023-018-0675-5

On the Global Limiting Absorption Principle for Massless Dirac Operators. / Carey, Alan; Gesztesy, Fritz; Kaad, Jens; Levitina, Galina; Nichols, Roger; Potapov, Denis; Sukochev, Fedor.

I: Annales Henri Poincare, Bind 19, Nr. 7, 2018, s. 1993-2019.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

TY - JOUR

T1 - On the Global Limiting Absorption Principle for Massless Dirac Operators

AU - Carey, Alan

AU - Gesztesy, Fritz

AU - Kaad, Jens

AU - Levitina, Galina

AU - Nichols, Roger

AU - Potapov, Denis

AU - Sukochev, Fedor

PY - 2018

Y1 - 2018

N2 - We prove a global limiting absorption principle on the entire real line for free, massless Dirac operators H0= α· (- i∇) for all space dimensions n∈ N, n⩾ 2. This is a new result for all dimensions other than three, in particular, it applies to the two-dimensional case which is known to be of some relevance in applications to graphene. We also prove an essential self-adjointness result for first-order matrix-valued differential operators with Lipschitz coefficients.

AB - We prove a global limiting absorption principle on the entire real line for free, massless Dirac operators H0= α· (- i∇) for all space dimensions n∈ N, n⩾ 2. This is a new result for all dimensions other than three, in particular, it applies to the two-dimensional case which is known to be of some relevance in applications to graphene. We also prove an essential self-adjointness result for first-order matrix-valued differential operators with Lipschitz coefficients.

U2 - 10.1007/s00023-018-0675-5

DO - 10.1007/s00023-018-0675-5

M3 - Journal article

AN - SCOPUS:85045455404

VL - 19

SP - 1993

EP - 2019

JO - Annales Henri Poincare

JF - Annales Henri Poincare

SN - 1424-0637

IS - 7

ER -