Obstacle/gap detection and terrain classification of walking robots based on a 2D laser range finder

Patrick Kesper, Eduard Grinke, Frank Hesse, Florentin Wörgötter, Poramate Manoonpong

Publikation: Kapitel i bog/rapport/konference-proceedingKapitel i bogForskningpeer review

Abstract

This paper utilizes a 2D laser range finder (LRF) to determine the behavior of a walking robot. The LRF provides information for 1) obstacle/gap detection as well as 2) terrain classification. The obstacle/gap detection is based on an edge detection with increased robustness and accuracy due to customized pre and post processing. Its output is used to drive obstacle/gap avoidance behavior or climbing behavior, depending on the height of obstacles or the depth of gaps. The terrain classification employs terrain roughness to select a proper gait with respect to the current terrain. As a result, the combination of these methods enables the robot to decide if obstacles and gaps can be climbed up/down or have to be avoided while at the same time a terrain specific gait can be chosen.

OriginalsprogEngelsk
TitelNature-Inspired Mobile Robotics
Antal sider8
ForlagWorld Scientific
Publikationsdato1. jan. 2013
Sider419-426
ISBN (Trykt)9789814525527
ISBN (Elektronisk)9789814525534
DOI
StatusUdgivet - 1. jan. 2013

Fingeraftryk

Dyk ned i forskningsemnerne om 'Obstacle/gap detection and terrain classification of walking robots based on a 2D laser range finder'. Sammen danner de et unikt fingeraftryk.

Citationsformater