Note on disjoint cycles in multipartite tournaments

Gregory Gutin, Wei Li, Shujing Wang*, Anders Yeo, Yacong Zhou

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

In 1981, Bermond and Thomassen conjectured that for any positive integer k, every digraph with minimum out-degree at least 2k−1 admits k vertex-disjoint directed cycles. In this short paper, we verify the Bermond-Thomassen conjecture for triangle-free multipartite tournaments and 3-partite tournaments. Furthermore, we characterize 3-partite tournaments with minimum out-degree at least 2k−1 (k≥2) such that in each set of k vertex-disjoint directed cycles, every cycle has the same length.

OriginalsprogEngelsk
Artikelnummer114126
TidsskriftDiscrete Mathematics
Vol/bind347
Udgave nummer10
Antal sider5
ISSN0012-365X
DOI
StatusUdgivet - okt. 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Note on disjoint cycles in multipartite tournaments'. Sammen danner de et unikt fingeraftryk.

Citationsformater