Non-parametric Semi-supervised Learning by Bayesian Label Distribution Propagation

Jonatan Møller Nuutinen Gøttcke*, Arthur Zimek, Ricardo J.G.B. Campello

*Kontaktforfatter

Publikation: Kapitel i bog/rapport/konference-proceedingKonferencebidrag i proceedingsForskningpeer review

43 Downloads (Pure)

Abstract

Semi-supervised classification methods are specialized to use a very limited amount of labelled data for training and ultimately for assigning labels to the vast majority of unlabelled data. Label propagation is such a technique that assigns labels to those parts of unlabelled data that are in some sense close to labelled examples and then uses these predicted labels in turn to predict labels of more remote data. Here we propose to not propagate an immediate label decision to neighbors but to propagate the label probability distribution. This way we keep more information and take into account the remaining uncertainty of the classifier. We employ a Bayesian schema that is simpler and more straightforward than existing methods. As a consequence we avoid to propagate errors by decisions taken too early. A crisp decision can be derived from the propagated label distributions at will. We implement and test this strategy with a probabilistic k-nearest neighbor classifier, proving competitive with several state-of-the-art competitors in quality and more efficient in terms of computational resources.

OriginalsprogEngelsk
TitelSimilarity Search and Applications : 14th International Conference
RedaktørerNora Reyes, Richard Connor, Nils Kriege, Daniyal Kazempour, Ilaria Bartolini, Erich Schubert, Jian-Jia Chen
ForlagSpringer Science+Business Media
Publikationsdato2021
Sider118-132
ISBN (Trykt)978-3-030-89656-0
ISBN (Elektronisk)978-3-030-89657-7
DOI
StatusUdgivet - 2021
Begivenhed14th International Conference on Similarity Search and Applications, SISAP 2021 - Dortmund, Tyskland
Varighed: 29. sep. 20211. okt. 2021

Konference

Konference14th International Conference on Similarity Search and Applications, SISAP 2021
Land/OmrådeTyskland
ByDortmund
Periode29/09/202101/10/2021
NavnLecture Notes in Computer Science
Vol/bind13058 LNCS
ISSN0302-9743

Bibliografisk note

Publisher Copyright:
© 2021, Springer Nature Switzerland AG.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Non-parametric Semi-supervised Learning by Bayesian Label Distribution Propagation'. Sammen danner de et unikt fingeraftryk.

Citationsformater