Non-linear microlocal cut-off functors

Bingyu Zhang*

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

To any conic closed set of a cotangent bundle, one can associate four functors on the category of sheaves, which are called non-linear microlocal cut-off functors. Here we explain their relation with the microlocal cut-off functor defined by Kashiwara and Schapira, and prove a microlocal cut-off lemma for non-linear microlocal cut-off functors, adapting inputs from symplectic geometry. We also prove two Künneth formulas and a functor classification result for categories of sheaves with microsupport conditions.
OriginalsprogEngelsk
TidsskriftRendiconti del Seminario Matematico della Università di Padova
ISSN0041-8994
DOI
StatusE-pub ahead of print - 13. jan. 2025

Bibliografisk note

https://doi.org/10.4171/rsmup/174

Fingeraftryk

Dyk ned i forskningsemnerne om 'Non-linear microlocal cut-off functors'. Sammen danner de et unikt fingeraftryk.

Citationsformater